File size: 1,950 Bytes
85e238e 520a92d 85e238e 520a92d 85e238e 520a92d 85e238e 520a92d 85e238e 520a92d 85e238e 520a92d 85e238e 520a92d 85e238e 520a92d 85e238e 520a92d 85e238e 520a92d 85e238e 520a92d 85e238e 520a92d 85e238e 520a92d 85e238e 520a92d 85e238e 520a92d 85e238e 520a92d 85e238e 520a92d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
library_name: transformers
tags:
- lucie
- lucie-boosted
- llama
license: apache-2.0
datasets:
- jpacifico/french-orca-dpo-pairs-revised
language:
- fr
- en
---
### Lucie-Boosted-7B-Instruct
Post-training optimization of the foundation model [OpenLLM-France/Lucie-7B-Instruct](https://huggingface.co/OpenLLM-France/Lucie-7B-Instruct)
DPO fine-tuning using the [jpacifico/french-orca-dpo-pairs-revised](https://huggingface.co/datasets/jpacifico/french-orca-dpo-pairs-revised) RLHF dataset.
Training in French also enhances the model's overall performance.
*Lucie-7B has a context size of 32K tokens*
### OpenLLM Leaderboard
coming soon
### MT-Bench
coming soon
### Usage
You can run this model using my [Colab notebook](https://github.com/jpacifico/Chocolatine-LLM/blob/main/Chocolatine_14B_inference_test_colab.ipynb)
You can also run Chocolatine using the following code:
```python
import transformers
from transformers import AutoTokenizer
# Format prompt
message = [
{"role": "system", "content": "You are a helpful assistant chatbot."},
{"role": "user", "content": "What is a Large Language Model?"}
]
tokenizer = AutoTokenizer.from_pretrained(new_model)
prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False)
# Create pipeline
pipeline = transformers.pipeline(
"text-generation",
model=new_model,
tokenizer=tokenizer
)
# Generate text
sequences = pipeline(
prompt,
do_sample=True,
temperature=0.7,
top_p=0.9,
num_return_sequences=1,
max_length=200,
)
print(sequences[0]['generated_text'])
```
### Limitations
The Lucie-Boosted model is a quick demonstration that the Lucie foundation model can be easily fine-tuned to achieve compelling performance.
It does not have any moderation mechanism.
- **Developed by:** Jonathan Pacifico, 2025
- **Model type:** LLM
- **Language(s) (NLP):** French, English
- **License:** Apache-2.0 |