File size: 1,595 Bytes
2a17ce7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load your fine-tuned model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("./lockin_model")
model = AutoModelForCausalLM.from_pretrained("./lockin_model")

# Function to generate yes/no questions
def generate_question(input_text, max_retries=20):
    for _ in range(max_retries):
        # Add padding and attention mask
        inputs = tokenizer(
            input_text,
            return_tensors="pt",
            padding=True,
            truncation=True,
            return_attention_mask=True
        )
        
        output = model.generate(
            inputs["input_ids"],
            attention_mask=inputs["attention_mask"],
            max_new_tokens=100,
            do_sample=True,
            temperature=1.9,
            top_p=0.8,
            top_k=50,
            pad_token_id=tokenizer.eos_token_id
        )
        generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
        
        # Remove the input text from the generated output
        if generated_text.startswith(input_text):
            generated_text = generated_text[len(input_text):].strip()
        
        # If we got a non-empty response and it contains $LOCKIN, return it
        if generated_text and "$LOCKIN" in generated_text:
            return generated_text
            
    # If all retries failed, return default question
    return "Does $LOCKIN look great?"

# Example usage
prompt = "I need a yes/no question about $LOCKIN."
question = generate_question(prompt)
print("Generated Question:", question)