File size: 17,023 Bytes
18f5c57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 |
from typing import Annotated, Literal
from typing_extensions import TypedDict
from langgraph.graph import StateGraph, MessagesState, START, END
from langchain_core.messages import AIMessage, HumanMessage, SystemMessage
from langchain_core.output_parsers import JsonOutputParser
from langchain_community.document_transformers import BeautifulSoupTransformer, beautiful_soup_transformer
from langgraph.types import Command
from langchain_groq import ChatGroq
import operator
import pprint
import os
import requests
import html2text
API_KEY = os.getenv("GROQ_API_KEY")
OUT_RES = "<|FINISHED|>"
HTML_TRANSFORMER = html2text.HTML2Text()
HTML_TRANSFORMER.ignore_links = True
HTML_TRANSFORMER.ignore_images = True
BS_TRANSFORMER = BeautifulSoupTransformer()
def local_message_add(dict1, dict2):
key2 = list(dict2.keys())[0]
if key2 not in dict1:
dict1[key2] = dict2[key2]
else:
dict1[key2] = dict1[key2] + dict2[key2]
return dict1
def variable_state_update(dict1, dict2):
dict1.update(dict2)
return dict1
class GeneralStates(TypedDict):
messages: Annotated[list[dict[str, str]], lambda x,y:x+y]
checkpoints: dict[str,list]
local_messages: Annotated[dict, local_message_add]
variables: Annotated[dict, variable_state_update]
def format_sequence(seq, nested=False):
if isinstance(seq, (list, tuple, set, frozenset, dict)):# and not isinstance(seq, str):
# Handle dictionaries
if isinstance(seq, dict):
return format_dict(seq, nested=nested)
# Handle lists, tuples, sets, and frozensets
else:
return format_list_like(seq, nested=nested)
else:
return seq
# else:
# raise TypeError(f"Input must be a sequence (list, tuple, set, frozenset, dict, string), not a {type(seq)}")
def format_dict(d, nested=False):
# Format dictionary without enclosing braces
items = []
for i, (key, value) in enumerate(d.items()):
if isinstance(value, (list, tuple, set, frozenset, dict)):
value = format_sequence(value, nested=True) # Recursively format nested sequences
if not nested:
items.append(f"{i+1}. {key}: {value}")
else:
items.append(f"{key}: {value}")
return ",\n".join(items)
def format_list_like(seq, nested=False):
# Format list-like objects without enclosing brackets/parentheses
items = []
for i,item in enumerate(seq):
if isinstance(item, (list, tuple, set, frozenset, dict)):
item = format_sequence(item, nested=True) # Recursively format nested sequences
if not nested:
items.append(f"{i+1}. {item}")
else:
items.append(str(item))
return ",\n".join(items)
def format_dict_api(input_dict, combined):
formatted_dict = {}
for key, value in input_dict.items():
if isinstance(value, dict):
formatted_dict[key] = format_dict_api(value, combined)
elif isinstance(value, str):
# try:
formatted_dict[key] = value.format(**combined)
# except KeyError as e:
# print(f"Warning: Key {e} not found in combined dictionary for string {value}. Skipping formatting for this string.")
# formatted_dict[key] = value # keep original string if key not found
else:
formatted_dict[key] = value
return formatted_dict
def run_api(api_endpoints, variables, response, input_message, chain_id):
if not api_endpoints:
return {}
combined = variables.copy()
if response:
api_endpoint_type = "output"
if isinstance(response, dict):
combined = combined | response
# combined |= response
else:
combined["output_message"] = response
else:
api_endpoint_type = "input"
combined["input_message"] = input_message
resp = []
errors = []
for x in api_endpoints:
try:
input_var = {inp: combined[inp] for inp in x["input_variables"]}
res = requests.request(
x['method'],
x['url'],
headers = format_dict_api(x['headers'], input_var) if x["headers"] else None,
params = format_dict_api(x["params"], input_var) if x["params"] else None,
json = format_dict_api(x["request_body"], input_var) if x["request_body"] else None,
)
if x['response_type'] == 'json':
res = res.json()
else:
res = res.text
if res[:15] == "<!DOCTYPE html>":
if x["html_to_markdown"]:
res = HTML_TRANSFORMER.handle(res)
elif x["html_tags_to_extract"]:
res = BS_TRANSFORMER.extract_tags(res, tags=x["html_tags_to_extract"])
resp.append([res, x["name"]])
except Exception as e:
errors.append([e, x["name"]])
api_dict = {}
# if resp:
for x in resp:
# api_dict[f"<|{api_endpoint_type}_API_SUCCESS_{chain_id}_{x[1]}|>"] = x[0]
api_dict[f"{api_endpoint_type}_{x[1]}_{chain_id}_success"] = x[0]
for x in errors:
# api_dict[f"<|{api_endpoint_type}_API_ERROR_{chain_id}_{x[1]}|>"] = x[0]
api_dict[f"{api_endpoint_type}_{x[1]}_{chain_id}_error"] = x[0]
variables.update(api_dict)
return api_dict
def agent_builder(states: GeneralStates, chain: dict, row:int, depth: int):
# print("[BUILD AGENT] Start....")
# agent = chain.get("agent")
model_config = chain.get("agent")
print("[MODEL CONFIG]", model_config)
child = chain.get("child")
checkpoints = states.get("checkpoints", {})
print("[STATES]", states)
for k,v in checkpoints.items():
# if k == model_config["name"]:
if k == chain["id"]:
return Command(goto=v)
api_dict = {"variables":{}}
variables = states.get("variables", {})
variables["input_message"] = states["messages"][-1].content
# print("[CHAIN]", chain),
# print()
api_res = run_api(model_config["input_api_endpoints"], variables, None, states["messages"][-1].content, chain["id"])
api_dict["variables"].update(api_res)
for c in child:
if c["condition_from"] == "input" and states['messages'][-1].content.strip() == c["condition"]:
redirect_agent_message = AIMessage(f"Switch to Agent {c['id']}")
# local_message = states["local_messages"].get(model_config["name"])
local_message = states["local_messages"].get(chain["id"])
if local_message:
update_dict = {
"local_messages": {
# model_config["name"]:[redirect_agent_message],
chain["id"]:[redirect_agent_message],
c["id"]:[states['messages'][-1]]
},
}
else:
update_dict = {}
if c.get("checkpoint"):
# update_dict["checkpoints"] = {model_config["name"]:c["id"]}
update_dict["checkpoints"] = {chain["id"]:c["id"]}
return Command(goto=c["id"], update=update_dict | api_dict)
# messages = states["local_messages"].get(model_config["name"])
messages = states["local_messages"].get(chain["id"])
if messages:
messages.append(states["messages"][-1])
else:
messages = states["messages"]
input_var = model_config.get("input_variables")
output_variables = model_config.get("output_variables")
if model_config.get("is_template"):
response = model_config.get("prompt")
if input_var:
# response = response.format(**{var: format_sequence(variables[var]) for var in input_var})
response = response.format(**{var: variables[var] for var in input_var})
response = AIMessage(response)
api_res = run_api(model_config["output_api_endpoints"], variables, response.content, messages[-1].content, chain["id"])
api_dict["variables"].update(api_res)
# return {"messages":[response], "local_messages":{model_config["name"]:[response]}}
if output_variables:
out = {out_var: response.content for out_var in output_variables}
if "messages" not in output_variables:
api_dict["variables"].update(out)
return api_dict
else:
out.pop("messages")
api_dict["variables"].update(out)
return {"messages":[response], "local_messages":{chain["id"]:[response]}} | api_dict
def run_agent(i, loop_input_variables, variables):
if input_var:
print("[AGENT ID]", chain['id'])
print("[INPUT VARIABLES]", input_var)
print("[VARIABLES]", variables)
user_input = "\n".join([str(variables[var]) for var in input_var])
# print("[USER INPUT]", user_input)
if i == -1:
prompt = model_config.get("prompt").format(**{var: variables[var] for var in input_var})
else:
prompt = model_config.get("prompt").format(
**{var: variables[var][i] if var in loop_input_variables else variables[var] for var in input_var}
)
else:
user_input = messages[-1].content
prompt = model_config.get("prompt") + "\n\n" + messages[-1].content
model = ChatGroq(
# model="mixtral-8x7b-32768",
# model="llama-3.2-11b-vision-preview",
# model="llama-3.1-8b-instant",
# model = "gemma2-9b-it",
model="llama-3.3-70b-versatile",
# model="deepseek-r1-distill-llama-70b",
temperature=model_config.get("creativity"),
max_tokens=None,
timeout=None,
max_retries=2,
api_key=API_KEY
)
routes = model_config.get("routes")
output_collector = model_config.get("output_collector")
if routes:
add_prompt = f"YOU MUST GENERATE OUTPUT STRICTLY one of the following list : [{', '.join(routes)}]\n\n"
if model_config.get("routes_description"):
add_prompt += "HERE IS THE CONDITIONS FOR EACH OUTPUT:\n"
add_prompt += "\n".join([f"{x}: {y}" for x,y in zip(routes, model_config.get("routes_description"))])
add_prompt += "\n\n"
prompt = add_prompt + prompt
elif output_collector:
# CLOSING AND OPENING BRACKETS
add_prompt = f"YOU MUST GENERATE OUTPUT STRICTLY IN THE FOLLOWING JSON FORMAT, REMEMBER TO ADD {{}} BEFORE AND AFTER JSON CODE:\n"
# add_prompt += "\n".join([f"{x['name']}: {x['data_type']} = {x['description']}" for x in output_collector])
add_prompt += "\n".join(output_collector)
add_prompt += "\n\n"
prompt = prompt +"\n\n"+ add_prompt
response = (model | JsonOutputParser()).invoke(messages[:-1] + [HumanMessage(content=prompt)])
if output_variables:
for k in response.keys():
if k not in output_variables:
del response[k]
api_res = run_api(model_config["output_api_endpoints"], variables, response, messages[-1].content, chain["id"])
api_dict["variables"].update(api_res)
return {"variables":response | api_dict["variables"]}
response = model.invoke(messages[:-1] + [HumanMessage(content=prompt)])
for c in child:
if c["condition_from"] == "output" and response.content.strip() == c["condition"]:
redirect_agent_message = AIMessage(f"Switch to Agent {c['id']}")
# local_message = states["local_messages"].get(model_config["name"])
local_message = states["local_messages"].get(chain["id"])
if local_message:
update_dict = {
"local_messages": {
# model_config["name"]:[redirect_agent_message],
chain["id"]:[redirect_agent_message],
c["id"]:[HumanMessage(user_input)]
},
}
else:
update_dict = {}
if c.get("checkpoint"):
# update_dict["checkpoints"] = {model_config["name"]:c["id"]}
update_dict["checkpoints"] = {chain["id"]:c["id"]}
api_res = run_api(model_config["output_api_endpoints"], variables, response.content, messages[-1].content, chain["id"])
api_dict["variables"].update(api_res)
# if output_variables:
# api_dict["variables"].update({out_var: response.content for out_var in output_variables})
if output_variables:
out = {out_var: response.content for out_var in output_variables}
if "messages" not in output_variables:
api_dict["variables"].update(out)
return api_dict
else:
api_dict["messages"] = out.pop("messages")
api_dict["variables"].update(out)
return Command(goto=c["id"], update=update_dict | api_dict)
elif response.content.strip() == OUT_RES:
api_res = run_api(model_config["output_api_endpoints"], variables, None, messages[-1].content, chain["id"])
api_dict["variables"].update(api_res)
return {} | api_dict
api_res = run_api(model_config["output_api_endpoints"], variables, response.content, messages[-1].content, chain["id"])
api_dict["variables"].update(api_res)
if output_variables:
out = {out_var: response.content for out_var in output_variables}
if "messages" not in output_variables:
api_dict["variables"].update(out)
return api_dict
else:
out.pop("messages")
api_dict["variables"].update(out)
# return {"messages":[response], "local_messages":{model_config["name"]:[response]}} | api_dict
return {"messages":[response], "local_messages":{chain["id"]:[response]}} | api_dict
if not chain["loop_input_variables"]:
return run_agent(-1, [], variables)
else:
max_loop = min([len(states["variables"].get(x)) for x in chain["loop_input_variables"]])
updates = {"variables":{}}
for i in range(max_loop):
out_variables = run_agent(i, chain["loop_input_variables"], variables)
if type(out_variables) == dict:
if not out_variables.get("variables"):
continue
for k,v in out_variables["variables"].items():
if k not in updates["variables"].keys():
updates["variables"][k] = []
if type(v) == list:
updates["variables"][k] += v
else:
updates["variables"][k].append(v)
else:
updates = out_variables
return updates
def route(states, routes):
if states["messages"][-1].content.strip() in routes:
return states["messages"][-1].content.strip()
return END
def build_chain(chains, checkpointer, parent_name=None, depth=0):
print("[BUILD CHAIN] START....")
stack = [(chains, parent_name, depth, 0)]
builder = StateGraph(GeneralStates)
while stack:
current_chains, current_parent, current_depth, i = stack.pop()
print("STACK", i)
if i >= len(current_chains):
continue
c = current_chains[i]
c_id = c["id"]
# agent = agents[c["agent"]]
try:
print("ADDED NODE!")
builder.add_node(
c_id,
lambda states, c=c, i=i, depth=current_depth: agent_builder(states, c, i, depth)
)
# print("[ADD NODE]", c_id, i, current_depth)
except ValueError as e:
print("[ERROR]",e)
pass
# Push the next chain in the current list to be processed after children
if i + 1 < len(current_chains):
stack.append((current_chains, current_parent, current_depth, i + 1))
# Process children or add edge to END
if c.get("child"):
stack.append((
c["child"],
c_id,
current_depth + 1,
0
))
condition_ids = []
for x in c["child"]:
if x["condition"]:
condition_ids.append(x["id"])
else:
builder.add_edge(c_id, x["id"])
if condition_ids:
builder.add_conditional_edges(
c_id,
lambda states: route(states, condition_ids), path_map=condition_ids + [END]
)
else:
builder.add_edge(
c_id,
END
)
print("SET STARTING POINTS")
for start_point in chains:
builder.add_edge(START, start_point["id"])
print("[NODES]", builder.nodes)
print("[EDGES]", builder.edges)
graph = builder.compile(checkpointer=checkpointer)
return graph
|