--- library_name: transformers license: apache-2.0 base_model: bert-base-multilingual-cased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: results results: [] --- # results This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0995 - Accuracy: 0.9724 - Precision: 0.9731 - Recall: 0.9724 - F1: 0.9724 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.1995 | 1.0 | 172 | 0.1873 | 0.9507 | 0.9508 | 0.9507 | 0.9505 | | 0.1341 | 2.0 | 344 | 0.1119 | 0.9666 | 0.9670 | 0.9666 | 0.9666 | | 0.0784 | 3.0 | 516 | 0.0995 | 0.9724 | 0.9731 | 0.9724 | 0.9724 | | 0.0609 | 4.0 | 688 | 0.1330 | 0.9623 | 0.9623 | 0.9623 | 0.9623 | | 0.0434 | 5.0 | 860 | 0.1333 | 0.9637 | 0.9638 | 0.9637 | 0.9637 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0