DeLVM / dist_train_utils.py
jirong's picture
Upload folder using huggingface_hub
ee3e701 verified
import io
import os
import torch
import torch.distributed as dist
import psutil
_print = print
# DDP launcher 启动训练脚本时,会传入多机训练相关的环境变量,包括
# WORLD_SIZE - 进程总数量
# RANK - 唯一进程 ID,从 0 开始
# LOCAL_RANK - 一台机器上唯一进程 ID,从 0 开始
# 例如 2 worker,每个 worker 3 gpu,那么
# WORLD_SIZE = 2*3=6
# RANK 取值范围为 0-5
# LOCAL_RANK 每台机器上的取值范围为 0-2
def get_world_size(): return int(os.getenv('WORLD_SIZE', 1))
def get_rank(): return int(os.getenv('RANK', 0))
def get_local_rank(): return int(os.getenv('LOCAL_RANK', 0))
# 是否是分布式训练
def is_dist():
return dist.is_available() and dist.is_initialized() and get_world_size() > 1
def get_current_memory_gb():
# 获取当前进程内存占用。
pid = os.getpid()
p = psutil.Process(pid)
info = p.memory_full_info()
return info.uss / 1024. / 1024. / 1024.
# 分布式训练使用 print 等方法时,每个进程都会输出,显示效果较差
# 可以使用如下工具方法,只有 LOCAL_RANK=0 时才会输出
# all 参数表示强制每个进程输出
def print(*argc, all=False, **kwargs):
if not is_dist():
_print(*argc, **kwargs)
return
if not all and get_local_rank() != 0:
return
output = io.StringIO()
kwargs['end'] = ''
kwargs['file'] = output
kwargs['flush'] = True
_print(*argc, **kwargs)
s = output.getvalue()
output.close()
s = '[rank {}] {}'.format(dist.get_rank(), s)
_print(s)
# 通过 all_reduce 计算某数值在所有进程上的平均值
# 多卡训练时,可以用于计算准确率等指标
def reduce_mean(tensor, nprocs=None):
if not is_dist():
return tensor
if not isinstance(tensor, torch.Tensor):
device = torch.cuda.current_device()
rt = torch.tensor(tensor, device=device)
else:
rt = tensor.clone()
dist.all_reduce(rt, op=dist.ReduceOp.SUM)
nprocs = nprocs if nprocs else dist.get_world_size()
rt = rt / nprocs
if not isinstance(tensor, torch.Tensor):
rt = rt.item()
return rt
# 通过 all_reduce 求和
def reduce_sum(tensor):
if not is_dist():
return tensor
if not isinstance(tensor, torch.Tensor):
device = torch.cuda.current_device()
rt = torch.tensor(tensor, device=device)
else:
rt = tensor.clone()
dist.all_reduce(rt, op=dist.ReduceOp.SUM)
if not isinstance(tensor, torch.Tensor):
rt = rt.item()
return rt
# 进程间等待,当所有进程都执行该函数后,才会继续向下执行代码
# 比如 rank=0 的进程保存模型,其他进程等待 rank_0 保存完成后才继续执行后续代码
def barrier():
if not is_dist():
return
dist.barrier()