File size: 14,089 Bytes
d9f94a5
e1487c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9f94a5
e1487c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
---
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
model_file: model.pkl
widget:
  structuredData:
    angel_n_rounds:
    - 0.0
    - 0.0
    - 0.0
    pre_seed_n_rounds:
    - 0.0
    - 0.0
    - 0.0
    seed_funding:
    - 1250000.0
    - 800000.0
    - 8000000.0
    seed_n_rounds:
    - 1.0
    - 3.0
    - 1.0
    time_first_funding:
    - 1270.0
    - 1856.0
    - 689.0
    time_till_series_a:
    - 1455.0
    - 1667.0
    - 1559.0
---

# Model description

[More Information Needed]

## Intended uses & limitations

[More Information Needed]

## Training Procedure

### Hyperparameters

The model is trained with below hyperparameters.

<details>
<summary> Click to expand </summary>

| Hyperparameter                                | Value                                                                                              |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------|
| memory                                        |                                                                                                    |
| steps                                         | [('transformation', ColumnTransformer(transformers=[('min_max_scaler', MinMaxScaler(),<br />                                 ['time_first_funding', 'seed_funding',<br />                                  'time_till_series_a'])])), ('model', LogisticRegression(penalty='none', random_state=0))]                                                                                                    |
| verbose                                       | False                                                                                              |
| transformation                                | ColumnTransformer(transformers=[('min_max_scaler', MinMaxScaler(),<br />                                 ['time_first_funding', 'seed_funding',<br />                                  'time_till_series_a'])])                                                                                                    |
| model                                         | LogisticRegression(penalty='none', random_state=0)                                                 |
| transformation__n_jobs                        |                                                                                                    |
| transformation__remainder                     | drop                                                                                               |
| transformation__sparse_threshold              | 0.3                                                                                                |
| transformation__transformer_weights           |                                                                                                    |
| transformation__transformers                  | [('min_max_scaler', MinMaxScaler(), ['time_first_funding', 'seed_funding', 'time_till_series_a'])] |
| transformation__verbose                       | False                                                                                              |
| transformation__verbose_feature_names_out     | True                                                                                               |
| transformation__min_max_scaler                | MinMaxScaler()                                                                                     |
| transformation__min_max_scaler__clip          | False                                                                                              |
| transformation__min_max_scaler__copy          | True                                                                                               |
| transformation__min_max_scaler__feature_range | (0, 1)                                                                                             |
| model__C                                      | 1.0                                                                                                |
| model__class_weight                           |                                                                                                    |
| model__dual                                   | False                                                                                              |
| model__fit_intercept                          | True                                                                                               |
| model__intercept_scaling                      | 1                                                                                                  |
| model__l1_ratio                               |                                                                                                    |
| model__max_iter                               | 100                                                                                                |
| model__multi_class                            | auto                                                                                               |
| model__n_jobs                                 |                                                                                                    |
| model__penalty                                | none                                                                                               |
| model__random_state                           | 0                                                                                                  |
| model__solver                                 | lbfgs                                                                                              |
| model__tol                                    | 0.0001                                                                                             |
| model__verbose                                | 0                                                                                                  |
| model__warm_start                             | False                                                                                              |

</details>

### Model Plot

The model plot is below.

<style>#sk-container-id-1 {color: black;background-color: white;}#sk-container-id-1 pre{padding: 0;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-1" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;transformation&#x27;,ColumnTransformer(transformers=[(&#x27;min_max_scaler&#x27;,MinMaxScaler(),[&#x27;time_first_funding&#x27;,&#x27;seed_funding&#x27;,&#x27;time_till_series_a&#x27;])])),(&#x27;model&#x27;, LogisticRegression(penalty=&#x27;none&#x27;, random_state=0))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" ><label for="sk-estimator-id-1" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;transformation&#x27;,ColumnTransformer(transformers=[(&#x27;min_max_scaler&#x27;,MinMaxScaler(),[&#x27;time_first_funding&#x27;,&#x27;seed_funding&#x27;,&#x27;time_till_series_a&#x27;])])),(&#x27;model&#x27;, LogisticRegression(penalty=&#x27;none&#x27;, random_state=0))])</pre></div></div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-2" type="checkbox" ><label for="sk-estimator-id-2" class="sk-toggleable__label sk-toggleable__label-arrow">transformation: ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(transformers=[(&#x27;min_max_scaler&#x27;, MinMaxScaler(),[&#x27;time_first_funding&#x27;, &#x27;seed_funding&#x27;,&#x27;time_till_series_a&#x27;])])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-3" type="checkbox" ><label for="sk-estimator-id-3" class="sk-toggleable__label sk-toggleable__label-arrow">min_max_scaler</label><div class="sk-toggleable__content"><pre>[&#x27;time_first_funding&#x27;, &#x27;seed_funding&#x27;, &#x27;time_till_series_a&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-4" type="checkbox" ><label for="sk-estimator-id-4" class="sk-toggleable__label sk-toggleable__label-arrow">MinMaxScaler</label><div class="sk-toggleable__content"><pre>MinMaxScaler()</pre></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-5" type="checkbox" ><label for="sk-estimator-id-5" class="sk-toggleable__label sk-toggleable__label-arrow">LogisticRegression</label><div class="sk-toggleable__content"><pre>LogisticRegression(penalty=&#x27;none&#x27;, random_state=0)</pre></div></div></div></div></div></div></div>

## Evaluation Results

[More Information Needed]

# How to Get Started with the Model

[More Information Needed]

# Model Card Authors

This model card is written by following authors:

[More Information Needed]

# Model Card Contact

You can contact the model card authors through following channels:
[More Information Needed]

# Citation

Below you can find information related to citation.

**BibTeX:**
```
[More Information Needed]
```

# model_card_authors

jirko

# model_description

just the temporal regression with reduced input features