|
from .VLMConfig import VLMConfig
|
|
from .model import *
|
|
from typing import Optional, Tuple, List
|
|
from torch import nn
|
|
import warnings
|
|
from transformers import CLIPProcessor, CLIPModel
|
|
import torch
|
|
|
|
warnings.filterwarnings('ignore')
|
|
|
|
|
|
class VisionProj(nn.Module):
|
|
def __init__(self, ve_dim=768, lm_dim=512):
|
|
super().__init__()
|
|
self.ve_dim = ve_dim
|
|
self.lm_dim = lm_dim
|
|
self.vision_proj = nn.Sequential(
|
|
nn.Linear(self.ve_dim, self.lm_dim)
|
|
)
|
|
|
|
def forward(self, image_encoders):
|
|
vision_proj = self.vision_proj(image_encoders)
|
|
return vision_proj
|
|
|
|
|
|
|
|
class MiniMindVLM(MiniMindLM):
|
|
config_class = VLMConfig
|
|
|
|
def __init__(self, params: VLMConfig = None):
|
|
super().__init__(params)
|
|
if not params: params = VLMConfig()
|
|
self.params = params
|
|
self.vision_encoder, self.processor = self.__class__.get_vision_model()
|
|
self.vision_proj = VisionProj(lm_dim=params.dim)
|
|
|
|
@staticmethod
|
|
def get_vision_model(model_path="./model/vision_model/clip-vit-base-patch16"):
|
|
model = CLIPModel.from_pretrained(model_path)
|
|
processor = CLIPProcessor.from_pretrained(model_path)
|
|
|
|
for param in model.parameters():
|
|
param.requires_grad = False
|
|
return model.eval(), processor
|
|
|
|
@staticmethod
|
|
def image2tensor(image, processor):
|
|
if image.mode in ['RGBA', 'LA']: image = image.convert('RGB')
|
|
inputs = processor(images=image, return_tensors="pt")['pixel_values']
|
|
return inputs
|
|
|
|
@staticmethod
|
|
def get_image_embeddings(image_tensors, vision_model):
|
|
with torch.no_grad():
|
|
outputs = vision_model.vision_model(pixel_values=image_tensors)
|
|
img_embedding = outputs.last_hidden_state[:, 1:, :].squeeze()
|
|
return img_embedding
|
|
|
|
def count_vision_proj(self, tokens, h, vision_tensors=None, seqlen=512):
|
|
def find_indices(tokens, image_ids):
|
|
image_ids_tensor = torch.tensor(image_ids).to(tokens.device)
|
|
len_image_ids = len(image_ids)
|
|
if len_image_ids > tokens.size(1):
|
|
return None
|
|
tokens_view = tokens.unfold(1, len_image_ids, 1)
|
|
matches = (tokens_view == image_ids_tensor).all(dim=2)
|
|
return {
|
|
batch_idx: [(idx.item(), idx.item() + len_image_ids - 1) for idx in
|
|
matches[batch_idx].nonzero(as_tuple=True)[0]]
|
|
for batch_idx in range(tokens.size(0)) if matches[batch_idx].any()
|
|
} or None
|
|
|
|
image_indices = find_indices(tokens, self.params.image_ids)
|
|
if vision_tensors is not None and image_indices:
|
|
vision_proj = self.vision_proj(vision_tensors)
|
|
if len(vision_proj.shape) == 3:
|
|
vision_proj = vision_proj.unsqueeze(0)
|
|
new_h = []
|
|
for i in range(h.size(0)):
|
|
if i in image_indices:
|
|
h_i = h[i]
|
|
img_idx = 0
|
|
for start_idx, end_idx in image_indices[i]:
|
|
if img_idx < vision_proj.size(1):
|
|
h_i = torch.cat((h_i[:start_idx], vision_proj[i][img_idx], h_i[end_idx + 1:]), dim=0)[
|
|
:seqlen]
|
|
img_idx += 1
|
|
new_h.append(h_i)
|
|
else:
|
|
new_h.append(h[i])
|
|
return torch.stack(new_h, dim=0)
|
|
return h
|
|
|
|
def forward(self,
|
|
input_ids: Optional[torch.Tensor] = None,
|
|
past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None,
|
|
use_cache: bool = False,
|
|
**args):
|
|
start_pos = args.get('start_pos', 0)
|
|
pixel_tensors = args.get('pixel_tensors', None)
|
|
h = self.tok_embeddings(input_ids)
|
|
|
|
if pixel_tensors is not None and start_pos == 0:
|
|
if len(pixel_tensors.shape) == 6:
|
|
pixel_tensors = pixel_tensors.squeeze(2)
|
|
bs, num, c, im_h, im_w = pixel_tensors.shape
|
|
stack_dim = 1 if bs > 1 else 0
|
|
vision_tensors = torch.stack([
|
|
MiniMindVLM.get_image_embeddings(pixel_tensors[:, i, :, :, :], self.vision_encoder)
|
|
for i in range(num)
|
|
], dim=stack_dim)
|
|
h = self.count_vision_proj(tokens=input_ids, h=h, vision_tensors=vision_tensors, seqlen=input_ids.shape[1])
|
|
|
|
pos_cis = self.pos_cis[start_pos:start_pos + input_ids.shape[1]]
|
|
past_kvs = []
|
|
for l, layer in enumerate(self.layers):
|
|
h, past_kv = layer(
|
|
h, pos_cis,
|
|
past_key_value=past_key_values[l] if past_key_values else None,
|
|
use_cache=use_cache
|
|
)
|
|
past_kvs.append(past_kv)
|
|
|
|
logits = self.output(self.norm(h))
|
|
aux_loss = sum(l.feed_forward.aux_loss for l in self.layers if isinstance(l.feed_forward, MOEFeedForward))
|
|
|
|
self.OUT.__setitem__('logits', logits)
|
|
self.OUT.__setitem__('aux_loss', aux_loss)
|
|
self.OUT.__setitem__('past_key_values', past_kvs)
|
|
return self.OUT
|
|
|