docs-update-readme-0624 (#23)
Browse files- docs: cherry-pick README from pr/17 e3e8a244 (40aa64361d8a8d16ff9335f623d8fb1d33ee5aa6)
- feat: add .gitignore (a188cd19ef4c2612fc8882f18621e9c82ffebd7d)
- docs: update the transformers and API codes (69ac66d5b083672544fb01ebc97227740153f190)
- docs: update the tech report link (3061fd752721844bbfaf7bb7a566d36ce28e6c06)
- docs: fix the code snippets (5a1b238231f4de5b3d9bdb5c8d9e74eae6883d60)
- .gitignore +73 -0
- README.md +303 -58
.gitignore
ADDED
|
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Python
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[cod]
|
| 4 |
+
*$py.class
|
| 5 |
+
*.so
|
| 6 |
+
.Python
|
| 7 |
+
build/
|
| 8 |
+
develop-eggs/
|
| 9 |
+
dist/
|
| 10 |
+
downloads/
|
| 11 |
+
eggs/
|
| 12 |
+
.eggs/
|
| 13 |
+
lib/
|
| 14 |
+
lib64/
|
| 15 |
+
parts/
|
| 16 |
+
sdist/
|
| 17 |
+
var/
|
| 18 |
+
wheels/
|
| 19 |
+
*.egg-info/
|
| 20 |
+
.installed.cfg
|
| 21 |
+
*.egg
|
| 22 |
+
|
| 23 |
+
# Virtual Environment
|
| 24 |
+
venv/
|
| 25 |
+
env/
|
| 26 |
+
ENV/
|
| 27 |
+
.env
|
| 28 |
+
.venv
|
| 29 |
+
env.bak/
|
| 30 |
+
venv.bak/
|
| 31 |
+
|
| 32 |
+
# IDE
|
| 33 |
+
.idea/
|
| 34 |
+
.vscode/
|
| 35 |
+
*.swp
|
| 36 |
+
*.swo
|
| 37 |
+
.project
|
| 38 |
+
.pydevproject
|
| 39 |
+
.settings/
|
| 40 |
+
|
| 41 |
+
# Jupyter Notebook
|
| 42 |
+
.ipynb_checkpoints
|
| 43 |
+
*.ipynb
|
| 44 |
+
|
| 45 |
+
# Distribution / packaging
|
| 46 |
+
.Python
|
| 47 |
+
*.manifest
|
| 48 |
+
*.spec
|
| 49 |
+
|
| 50 |
+
# Unit test / coverage reports
|
| 51 |
+
htmlcov/
|
| 52 |
+
.tox/
|
| 53 |
+
.coverage
|
| 54 |
+
.coverage.*
|
| 55 |
+
.cache
|
| 56 |
+
nosetests.xml
|
| 57 |
+
coverage.xml
|
| 58 |
+
*.cover
|
| 59 |
+
.hypothesis/
|
| 60 |
+
|
| 61 |
+
# Logs and databases
|
| 62 |
+
*.log
|
| 63 |
+
*.sqlite
|
| 64 |
+
*.db
|
| 65 |
+
|
| 66 |
+
# OS generated files
|
| 67 |
+
.DS_Store
|
| 68 |
+
.DS_Store?
|
| 69 |
+
._*
|
| 70 |
+
.Spotlight-V100
|
| 71 |
+
.Trashes
|
| 72 |
+
ehthumbs.db
|
| 73 |
+
Thumbs.db
|
README.md
CHANGED
|
@@ -1,92 +1,337 @@
|
|
| 1 |
-
|
| 2 |
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
-
## Examples
|
| 5 |
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
-
```python
|
| 9 |
-
import torch
|
| 10 |
-
from transformers import AutoModel
|
| 11 |
-
from PIL import Image
|
| 12 |
|
| 13 |
-
|
| 14 |
|
| 15 |
-
|
| 16 |
-
model = AutoModel.from_pretrained('jinaai/jina-embeddings-v4', trust_remote_code=True)
|
| 17 |
-
model = model.to(device)
|
| 18 |
|
| 19 |
-
# Sample data
|
| 20 |
-
texts = ["Here is some sample code", "This is a matching text"]
|
| 21 |
-
image_paths = ['/<path_to_image>']
|
| 22 |
-
images = [Image.open(path) for path in image_paths]
|
| 23 |
|
| 24 |
-
|
| 25 |
-
# Generate embeddings with dimension truncation (256), decrease max_pixels
|
| 26 |
-
img_embeddings = model.encode_images(images=images, truncate_dim=256, max_pixels=602112, task='text-matching')
|
| 27 |
-
text_embeddings = model.encode_texts(texts=texts, truncate_dim=256, max_length=512, task='text-matching')
|
| 28 |
|
| 29 |
-
|
| 30 |
-
|
|
|
|
|
|
|
| 31 |
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
-
|
| 37 |
-
code = ["def hello_world():\n print('Hello, World!')"]
|
| 38 |
-
code_embeddings = model.encode_texts(texts=code, task='code')
|
| 39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
```
|
| 41 |
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
```python
|
|
|
|
|
|
|
|
|
|
| 45 |
import torch
|
| 46 |
-
from transformers import AutoModel, AutoProcessor
|
| 47 |
-
from PIL import Image
|
| 48 |
|
| 49 |
-
|
|
|
|
| 50 |
|
| 51 |
-
|
| 52 |
-
model = AutoModel.from_pretrained('jinaai/jina-embeddings-v4', trust_remote_code=True)
|
| 53 |
-
model = model.to(device)
|
| 54 |
-
processor = AutoProcessor.from_pretrained('jinaai/jina-embeddings-v4', trust_remote_code=True)
|
| 55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
-
#
|
| 58 |
-
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
-
#
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
-
#
|
| 67 |
-
model.
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
with torch.autocast(device_type='cuda' if torch.cuda.is_available() else 'cpu'):
|
| 73 |
-
# Get embeddings
|
| 74 |
-
text_embeddings = model.model(**text_batch, task_label='retrieval').single_vec_emb
|
| 75 |
-
img_embeddings = model.model(**image_batch, task_label='retrieval').single_vec_emb
|
| 76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
|
|
|
|
|
|
|
|
|
| 83 |
```python
|
| 84 |
from sentence_transformers import SentenceTransformer
|
| 85 |
|
| 86 |
-
|
| 87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
)
|
| 89 |
|
| 90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
-
|
|
|
|
| 1 |
+
<br><br>
|
| 2 |
|
| 3 |
+
<p align="center">
|
| 4 |
+
<img src="https://huggingface.co/datasets/jinaai/documentation-images/resolve/main/logo.webp" alt="Jina AI: Your Search Foundation, Supercharged!" width="150px">
|
| 5 |
+
</p>
|
| 6 |
|
|
|
|
| 7 |
|
| 8 |
+
<p align="center">
|
| 9 |
+
<b>The embedding model trained by <a href="https://jina.ai/"><b>Jina AI</b></a>.</b>
|
| 10 |
+
</p>
|
| 11 |
+
|
| 12 |
+
<p align="center">
|
| 13 |
+
<b>Jina Embeddings v4: Multilingual Multimodal Embeddings</b>
|
| 14 |
+
</p>
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
## Quick Start
|
| 18 |
+
|
| 19 |
+
[Blog](https://alwaysjudgeabookbyitscover.com/) | [Technical Report](https://arxiv.org/abs/2506.18902) | [API](https://jina.ai/embeddings)
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
## Intended Usage & Model Info
|
| 23 |
+
`jina-embeddings-v4` is a multilingual, multimodal embedding model designed for unified representation of text and images.
|
| 24 |
+
The model is specialized for complex document retrieval, including visually rich documents with charts, tables, and illustrations.
|
| 25 |
+
Embeddings produced by `jina-embeddings-v4` serve as the backbone for neural information retrieval and multimodal GenAI applications.
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
Built based on [Qwen/Qwen2.5-VL-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct), `jina-embeddings-v4` has the following features:
|
| 29 |
+
|
| 30 |
+
- **Unified embeddings** for text, images, and visual documents, supporting both dense (single-vector) and late-interaction (multi-vector) retrieval.
|
| 31 |
+
- **Multilingual support** (20+ languages) and compatibility with a wide range of domains, including technical and visually complex documents.
|
| 32 |
+
- **Task-specific adapters** for retrieval, text matching, and code-related tasks, which can be selected at inference time.
|
| 33 |
+
- **Flexible embedding size**: dense embeddings are 2048 dimensions by default but can be truncated to as low as 128 with minimal performance loss.
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
Summary of features:
|
| 37 |
+
|
| 38 |
+
| Feature | Jina Embeddings V4 |
|
| 39 |
+
|------------|------------|
|
| 40 |
+
| Base Model | Qwen2.5-VL-3B-Instruct |
|
| 41 |
+
| Supported Tasks | `retrieval`, `text-matching`, `code` |
|
| 42 |
+
| Model DType | BFloat 16 |
|
| 43 |
+
| Max Sequence Length | 32768 |
|
| 44 |
+
| Single-Vector Dimension | 2048 |
|
| 45 |
+
| Multi-Vector Dimension | 128 |
|
| 46 |
+
| Matryoshka dimensions | 128, 256, 512, 1024, 2048 |
|
| 47 |
+
| Pooling Strategy | Mean pooling |
|
| 48 |
+
| Attention Mechanism | FlashAttention2 |
|
| 49 |
+
|
| 50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
+
## Training, Data, Parameters
|
| 53 |
|
| 54 |
+
Please refer to our [technical report of jina-embeddings-v4](https://arxiv.org/abs/2506.18902) for the model and training details.
|
|
|
|
|
|
|
| 55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
+
## Usage
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
+
<details>
|
| 60 |
+
<summary>Requirements</a></summary>
|
| 61 |
+
|
| 62 |
+
The following Python packages are required:
|
| 63 |
|
| 64 |
+
- `transformers>=4.52.0`
|
| 65 |
+
- `torch>=2.6.0`
|
| 66 |
+
- `peft>=0.15.2`
|
| 67 |
+
- `torchvision`
|
| 68 |
+
- `pillow`
|
| 69 |
+
|
| 70 |
+
### Optional / Recommended
|
| 71 |
+
- **flash-attention**: Installing [flash-attention](https://github.com/Dao-AILab/flash-attention) is recommended for improved inference speed and efficiency, but not mandatory.
|
| 72 |
+
- **sentence-transformers**: If you want to use the model via the `sentence-transformers` interface, install this package as well.
|
| 73 |
|
| 74 |
+
</details>
|
|
|
|
|
|
|
| 75 |
|
| 76 |
+
|
| 77 |
+
<details>
|
| 78 |
+
<summary>via <a href="https://jina.ai/embeddings/">Jina AI Embeddings API</a></summary>
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
```bash
|
| 82 |
+
curl https://api.jina.ai/v1/embeddings \
|
| 83 |
+
-H "Content-Type: application/json" \
|
| 84 |
+
-H "Authorization: Bearer $JINA_AI_API_TOKEN" \
|
| 85 |
+
-d @- <<EOFEOF
|
| 86 |
+
{
|
| 87 |
+
"model": "jina-embeddings-v4",
|
| 88 |
+
"task": "text-matching",
|
| 89 |
+
"input": [
|
| 90 |
+
{
|
| 91 |
+
"text": "غروب جميل على الشاطئ"
|
| 92 |
+
},
|
| 93 |
+
{
|
| 94 |
+
"text": "海滩上美丽的日落"
|
| 95 |
+
},
|
| 96 |
+
{
|
| 97 |
+
"text": "A beautiful sunset over the beach"
|
| 98 |
+
},
|
| 99 |
+
{
|
| 100 |
+
"text": "Un beau coucher de soleil sur la plage"
|
| 101 |
+
},
|
| 102 |
+
{
|
| 103 |
+
"text": "Ein wunderschöner Sonnenuntergang am Strand"
|
| 104 |
+
},
|
| 105 |
+
{
|
| 106 |
+
"text": "Ένα όμορφο ηλιοβασίλεμα πάνω από την παραλία"
|
| 107 |
+
},
|
| 108 |
+
{
|
| 109 |
+
"text": "समुद्र तट पर एक खूबसूरत सूर्यास्त"
|
| 110 |
+
},
|
| 111 |
+
{
|
| 112 |
+
"text": "Un bellissimo tramonto sulla spiaggia"
|
| 113 |
+
},
|
| 114 |
+
{
|
| 115 |
+
"text": "浜辺に沈む美しい夕日"
|
| 116 |
+
},
|
| 117 |
+
{
|
| 118 |
+
"text": "해변 위로 아름다운 일몰"
|
| 119 |
+
},
|
| 120 |
+
{
|
| 121 |
+
"image": "https://i.ibb.co/nQNGqL0/beach1.jpg"
|
| 122 |
+
},
|
| 123 |
+
{
|
| 124 |
+
"image": "https://i.ibb.co/r5w8hG8/beach2.jpg"
|
| 125 |
+
}
|
| 126 |
+
]
|
| 127 |
+
}
|
| 128 |
+
EOFEOF
|
| 129 |
```
|
| 130 |
|
| 131 |
+
</details>
|
| 132 |
+
|
| 133 |
+
<details>
|
| 134 |
+
<summary>via <a href="https://huggingface.co/docs/transformers/en/index">transformers</a></summary>
|
| 135 |
|
| 136 |
```python
|
| 137 |
+
# !pip install transformers>=4.52.0 torch>=2.6.0 peft>=0.15.2 torchvision pillow
|
| 138 |
+
# !pip install
|
| 139 |
+
from transformers import AutoModel
|
| 140 |
import torch
|
|
|
|
|
|
|
| 141 |
|
| 142 |
+
# Initialize the model
|
| 143 |
+
model = AutoModel.from_pretrained("jinaai/jina-embeddings-v4", trust_remote_code=True)
|
| 144 |
|
| 145 |
+
model.to("cuda")
|
|
|
|
|
|
|
|
|
|
| 146 |
|
| 147 |
+
# ========================
|
| 148 |
+
# 1. Retrieval Task
|
| 149 |
+
# ========================
|
| 150 |
+
# Configure truncate_dim, max_length (for texts), max_pixels (for images), vector_type, batch_size in the encode function if needed
|
| 151 |
|
| 152 |
+
# Encode query
|
| 153 |
+
query_embeddings = model.encode_text(
|
| 154 |
+
texts=["Overview of climate change impacts on coastal cities"],
|
| 155 |
+
task="retrieval",
|
| 156 |
+
prompt_name="query",
|
| 157 |
+
)
|
| 158 |
|
| 159 |
+
# Encode passage (text)
|
| 160 |
+
passage_embeddings = model.encode_text(
|
| 161 |
+
texts=[
|
| 162 |
+
"Climate change has led to rising sea levels, increased frequency of extreme weather events..."
|
| 163 |
+
],
|
| 164 |
+
task="retrieval",
|
| 165 |
+
prompt_name="passage",
|
| 166 |
+
)
|
| 167 |
|
| 168 |
+
# Encode image/document
|
| 169 |
+
image_embeddings = model.encode_image(
|
| 170 |
+
images=["https://i.ibb.co/nQNGqL0/beach1.jpg"],
|
| 171 |
+
task="retrieval",
|
| 172 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
|
| 174 |
+
# ========================
|
| 175 |
+
# 2. Text Matching Task
|
| 176 |
+
# ========================
|
| 177 |
+
texts = [
|
| 178 |
+
"غروب جميل على الشاطئ", # Arabic
|
| 179 |
+
"海滩上美丽的日落", # Chinese
|
| 180 |
+
"Un beau coucher de soleil sur la plage", # French
|
| 181 |
+
"Ein wunderschöner Sonnenuntergang am Strand", # German
|
| 182 |
+
"Ένα όμορφο ηλιοβασίλεμα πάνω από την παραλία", # Greek
|
| 183 |
+
"समुद्र तट पर एक खूबसूरत सूर्यास्त", # Hindi
|
| 184 |
+
"Un bellissimo tramonto sulla spiaggia", # Italian
|
| 185 |
+
"浜辺に沈む美しい夕日", # Japanese
|
| 186 |
+
"해변 위로 아름다운 일몰", # Korean
|
| 187 |
+
]
|
| 188 |
|
| 189 |
+
text_embeddings = model.encode_text(texts=texts, task="text-matching")
|
| 190 |
+
|
| 191 |
+
# ========================
|
| 192 |
+
# 3. Code Understanding Task
|
| 193 |
+
# ========================
|
| 194 |
+
|
| 195 |
+
# Encode query
|
| 196 |
+
query_embedding = model.encode_text(
|
| 197 |
+
texts=["Find a function that prints a greeting message to the console"],
|
| 198 |
+
task="code",
|
| 199 |
+
prompt_name="query",
|
| 200 |
+
)
|
| 201 |
+
|
| 202 |
+
# Encode code
|
| 203 |
+
code_embeddings = model.encode_text(
|
| 204 |
+
texts=["def hello_world():\n print('Hello, World!')"],
|
| 205 |
+
task="code",
|
| 206 |
+
prompt_name="passage",
|
| 207 |
+
)
|
| 208 |
+
|
| 209 |
+
# ========================
|
| 210 |
+
# 4. Use multivectors
|
| 211 |
+
# ========================
|
| 212 |
|
| 213 |
+
multivector_embeddings = model.encode_text(
|
| 214 |
+
texts=texts,
|
| 215 |
+
task="retrieval",
|
| 216 |
+
prompt_name="query",
|
| 217 |
+
return_multivector=True,
|
| 218 |
+
)
|
| 219 |
|
| 220 |
+
images = ["https://i.ibb.co/nQNGqL0/beach1.jpg", "https://i.ibb.co/r5w8hG8/beach2.jpg"]
|
| 221 |
+
multivector_image_embeddings = model.encode_image(
|
| 222 |
+
images=images,
|
| 223 |
+
task="retrieval",
|
| 224 |
+
return_multivector=True,
|
| 225 |
+
)
|
| 226 |
+
```
|
| 227 |
+
</details>
|
| 228 |
|
| 229 |
+
<details>
|
| 230 |
+
<summary>via <a href="https://sbert.net/">sentence-transformers</a></summary>
|
| 231 |
+
|
| 232 |
```python
|
| 233 |
from sentence_transformers import SentenceTransformer
|
| 234 |
|
| 235 |
+
# Initialize the model
|
| 236 |
+
model = SentenceTransformer("jinaai/jina-embeddings-v4", trust_remote_code=True)
|
| 237 |
+
# ========================
|
| 238 |
+
# 1. Retrieval Task
|
| 239 |
+
# ========================
|
| 240 |
+
# Encode query
|
| 241 |
+
query_embeddings = model.encode(
|
| 242 |
+
sentences=["Overview of climate change impacts on coastal cities"],
|
| 243 |
+
task="retrieval",
|
| 244 |
+
prompt_name="query",
|
| 245 |
+
)
|
| 246 |
+
|
| 247 |
+
print(f"query_embeddings.shape = {query_embeddings.shape}")
|
| 248 |
+
|
| 249 |
+
# Encode passage (text)
|
| 250 |
+
passage_embeddings = model.encode(
|
| 251 |
+
sentences=[
|
| 252 |
+
"Climate change has led to rising sea levels, increased frequency of extreme weather events..."
|
| 253 |
+
],
|
| 254 |
+
task="retrieval",
|
| 255 |
+
prompt_name="passage",
|
| 256 |
+
)
|
| 257 |
+
|
| 258 |
+
print(f"passage_embeddings.shape = {passage_embeddings.shape}")
|
| 259 |
+
|
| 260 |
+
# Encode image/document
|
| 261 |
+
image_embeddings = model.encode(
|
| 262 |
+
sentences=["https://i.ibb.co/nQNGqL0/beach1.jpg"],
|
| 263 |
+
task="retrieval",
|
| 264 |
+
)
|
| 265 |
+
|
| 266 |
+
print(f"image_embeddings.shape = {image_embeddings.shape}")
|
| 267 |
+
|
| 268 |
+
# ========================
|
| 269 |
+
# 2. Text Matching Task
|
| 270 |
+
# ========================
|
| 271 |
+
texts = [
|
| 272 |
+
"غروب جميل على الشاطئ", # Arabic
|
| 273 |
+
"海滩上美丽的日落", # Chinese
|
| 274 |
+
"Un beau coucher de soleil sur la plage", # French
|
| 275 |
+
"Ein wunderschöner Sonnenuntergang am Strand", # German
|
| 276 |
+
"Ένα όμορφο ηλιοβασίλεμα πάνω από την παραλία", # Greek
|
| 277 |
+
"समुद्र तट पर एक खूबसूरत सूर्यास्त", # Hindi
|
| 278 |
+
"Un bellissimo tramonto sulla spiaggia", # Italian
|
| 279 |
+
"浜辺に沈む美しい夕日", # Japanese
|
| 280 |
+
"해변 위로 아름다운 일몰", # Korean
|
| 281 |
+
]
|
| 282 |
+
|
| 283 |
+
text_embeddings = model.encode(sentences=texts, task="text-matching")
|
| 284 |
+
|
| 285 |
+
# ========================
|
| 286 |
+
# 3. Code Understanding Task
|
| 287 |
+
# ========================
|
| 288 |
+
|
| 289 |
+
# Encode query
|
| 290 |
+
query_embeddings = model.encode(
|
| 291 |
+
sentences=["Find a function that prints a greeting message to the console"],
|
| 292 |
+
task="code",
|
| 293 |
+
prompt_name="query",
|
| 294 |
)
|
| 295 |
|
| 296 |
+
# Encode code
|
| 297 |
+
code_embeddings = model.encode(
|
| 298 |
+
sentences=["def hello_world():\n print('Hello, World!')"],
|
| 299 |
+
task="code",
|
| 300 |
+
prompt_name="passage",
|
| 301 |
+
)
|
| 302 |
+
|
| 303 |
+
# ========================
|
| 304 |
+
# 4. Use multivectors
|
| 305 |
+
# ========================
|
| 306 |
+
|
| 307 |
+
multivector_text_embeddings = model.encode(
|
| 308 |
+
sentences=texts,
|
| 309 |
+
task="retrieval",
|
| 310 |
+
prompt_name="query",
|
| 311 |
+
return_multivector=True,
|
| 312 |
+
)
|
| 313 |
+
|
| 314 |
+
images = ["https://i.ibb.co/nQNGqL0/beach1.jpg", "https://i.ibb.co/r5w8hG8/beach2.jpg"]
|
| 315 |
+
|
| 316 |
+
multivector_image_embeddings = model.encode(
|
| 317 |
+
sentences=images,
|
| 318 |
+
task="retrieval",
|
| 319 |
+
return_multivector=True,
|
| 320 |
+
)
|
| 321 |
+
```
|
| 322 |
+
</details>
|
| 323 |
+
|
| 324 |
+
|
| 325 |
+
## License
|
| 326 |
+
|
| 327 |
+
This model is licensed to download and run under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/deed.en). It is available for commercial use via the [Jina Embeddings API](https://jina.ai/embeddings/), [AWS](https://longdogechallenge.com/), [Azure](https://longdogechallenge.com/), and [GCP](https://longdogechallenge.com/). To download for commercial use, please [contact us](https://jina.ai/contact-sales).
|
| 328 |
+
|
| 329 |
+
|
| 330 |
+
## Contact
|
| 331 |
+
|
| 332 |
+
Join our [Discord community](https://discord.jina.ai) and chat with other community members about ideas.
|
| 333 |
+
|
| 334 |
+
|
| 335 |
+
## Citation
|
| 336 |
|
| 337 |
+
If you find `jina-embeddings-v4` useful in your research, please cite the following paper:
|