File size: 7,584 Bytes
fa2224f
 
 
 
 
 
 
 
0df23dc
fa2224f
 
 
 
 
 
 
 
 
 
a6c0d30
fa2224f
14fbb0c
fa2224f
1256ad3
 
a6c0d30
14fbb0c
a6c0d30
14fbb0c
 
 
 
a6c0d30
14fbb0c
a6c0d30
1256ad3
a6c0d30
14fbb0c
1256ad3
bd791d0
1256ad3
a6c0d30
14fbb0c
a6c0d30
14fbb0c
a6c0d30
14fbb0c
 
a6c0d30
14fbb0c
a6c0d30
14fbb0c
bd791d0
 
 
 
 
14fbb0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6c0d30
 
14fbb0c
a6c0d30
 
 
 
 
 
 
 
 
 
 
14fbb0c
a6c0d30
 
 
 
 
 
 
 
 
 
14fbb0c
a6c0d30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14fbb0c
a6c0d30
 
 
 
 
 
 
 
14fbb0c
a6c0d30
14fbb0c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
---
pipeline_tag: text-generation
language:
- multilingual
inference: false
license: cc-by-nc-4.0
library_name: transformers
---

<br><br>

<p align="center">
<img src="https://huggingface.co/datasets/jinaai/documentation-images/resolve/main/logo.webp" alt="Jina AI: Your Search Foundation, Supercharged!" width="150px">
</p>

<p align="center">
<b>Trained by <a href="https://jina.ai/"><b>Jina AI</b></a>.</b>
</p>

[Blog](https://jina.ai/news/readerlm-v2-frontier-small-language-model-for-markdown-and-json) | [Colab](https://colab.research.google.com/drive/1FfPjZwkMSocOLsEYH45B3B4NxDryKLGI?usp=sharing)

# ReaderLM-v2

`ReaderLM-v2` is the second generation of [ReaderLM-v1](https://huggingface.co/jinaai/reader-lm-1.5b), a **1.5B** parameter language model that converts raw HTML into formatted markdown or structured JSON with improved accuracy and better support for longer contexts.
Supporting multiple languages (29 in total), `ReaderLM-v2` is specialized for tasks involving HTML parsing, transformation, and text extraction.

## Model Overview

- **Model Type**: Autoregressive, decoder-only transformer
- **Parameter Count**: ~1.5B
- **Context Window**: Up to 512K tokens (combined input and output)
- **Supported Languages**: English, Chinese, Japanese, Korean, French, Spanish, Portuguese, German, Italian, Russian, Vietnamese, Thai, Arabic, and more (29 total)

## What's New in `ReaderLM-v2`

`ReaderLM-v2` features several improvements over [ReaderLM-v1](https://huggingface.co/jinaai/reader-lm-1.5b):

- **Better Markdown Generation**: Generates cleaner, more readable Markdown output.
- **JSON Output**: Produce structured JSON-formatted text, enabling structured extraction for further downstream processing.
- **Longer Context Handling**: Can handle up to 512K tokens, which is beneficial for large HTML documents.
- **Multilingual Support**: Covers 29 languages for broader applications across international web data.

---

# Usage

Below, you will find instructions and examples for using `ReaderLM-v2` locally using the Hugging Face Transformers library.
For a more hands-on experience in a hosted environment, see the [Google Colab Notebook](https://colab.research.google.com/drive/1FfPjZwkMSocOLsEYH45B3B4NxDryKLGI?usp=sharing).

## On Google Colab

The easiest way to experience `ReaderLM-v2` is by running our [Colab notebook](https://colab.research.google.com/drive/1FfPjZwkMSocOLsEYH45B3B4NxDryKLGI?usp=sharing),
The notebook demonstrates HTML-to-markdown conversion, JSON extraction, and instruction-following using the HackerNews frontpage as an example.
The notebook is optimized for Colab's free T4 GPU tier and requires `vllm` and `triton` for acceleration and running.
Feel free to test it with any website.
For HTML-to-markdown tasks, simply input the raw HTML without any prefix instructions.
However, JSON output and instruction-based extraction require specific prompt formatting as shown in the examples.


## Local Usage

To use `ReaderLM-v2` locally:

1. Install the necessary dependencies:

   ```bash
   pip install transformers
   ```

2. Load and run the model:

   ```python
   from transformers import AutoModelForCausalLM, AutoTokenizer
   import re

   device = "cuda"  # or "cpu"
   tokenizer = AutoTokenizer.from_pretrained("jinaai/ReaderLM-v2")
   model = AutoModelForCausalLM.from_pretrained("jinaai/ReaderLM-v2").to(device)
   ```

3. (Optional) Pre-clean your HTML to remove scripts, styles, comments, to reduce the noise and length of the input a bit (i.e. make it more friendly for GPU VRAM):

   ```python
   # Patterns
   SCRIPT_PATTERN = r'<[ ]*script.*?\/[ ]*script[ ]*>'
   STYLE_PATTERN = r'<[ ]*style.*?\/[ ]*style[ ]*>'
   META_PATTERN = r'<[ ]*meta.*?>'
   COMMENT_PATTERN = r'<[ ]*!--.*?--[ ]*>'
   LINK_PATTERN = r'<[ ]*link.*?>'
   BASE64_IMG_PATTERN = r'<img[^>]+src="data:image/[^;]+;base64,[^"]+"[^>]*>'
   SVG_PATTERN = r'(<svg[^>]*>)(.*?)(<\/svg>)'

   def replace_svg(html: str, new_content: str = "this is a placeholder") -> str:
       return re.sub(
           SVG_PATTERN,
           lambda match: f"{match.group(1)}{new_content}{match.group(3)}",
           html,
           flags=re.DOTALL,
       )

   def replace_base64_images(html: str, new_image_src: str = "#") -> str:
       return re.sub(BASE64_IMG_PATTERN, f'<img src="{new_image_src}"/>', html)

   def clean_html(html: str, clean_svg: bool = False, clean_base64: bool = False):
       html = re.sub(SCRIPT_PATTERN, '', html, flags=re.IGNORECASE | re.MULTILINE | re.DOTALL)
       html = re.sub(STYLE_PATTERN, '', html, flags=re.IGNORECASE | re.MULTILINE | re.DOTALL)
       html = re.sub(META_PATTERN, '', html, flags=re.IGNORECASE | re.MULTILINE | re.DOTALL)
       html = re.sub(COMMENT_PATTERN, '', html, flags=re.IGNORECASE | re.MULTILINE | re.DOTALL)
       html = re.sub(LINK_PATTERN, '', html, flags=re.IGNORECASE | re.MULTILINE | re.DOTALL)

       if clean_svg:
           html = replace_svg(html)
       if clean_base64:
           html = replace_base64_images(html)
       return html
   ```

4. Create a prompt for the model:

  ```python
  def create_prompt(text: str, tokenizer=None, instruction: str = None, schema: str = None) -> str:
      """
      Create a prompt for the model with optional instruction and JSON schema.
      """
      if not instruction:
          instruction = "Extract the main content from the given HTML and convert it to Markdown format."
      if schema:
          # This is an example instruction for JSON output
          instruction = "Extract the specified information from a list of news threads and present it in a structured JSON format."
          prompt = f"{instruction}\n```html\n{text}\n```\nThe JSON schema is as follows:```json{schema}```"
      else:
          prompt = f"{instruction}\n```html\n{text}\n```"

      messages = [
          {
              "role": "user",
              "content": prompt,
          }
      ]

      return tokenizer.apply_chat_template(
          messages, tokenize=False, add_generation_prompt=True
      )
  ```

### HTML to Markdown Example

```python
# Example HTML
html = "<html><body><h1>Hello, world!</h1></body></html>"

html = clean_html(html)

input_prompt = create_prompt(html)
inputs = tokenizer.encode(input_prompt, return_tensors="pt").to(device)
outputs = model.generate(inputs, max_new_tokens=1024, temperature=0, do_sample=False, repetition_penalty=1.08)

print(tokenizer.decode(outputs[0]))
```

### Instruction-Focused Extraction

```python
instruction = "Extract the menu items from the given HTML and convert it to Markdown format."
input_prompt = create_prompt(html, instruction=instruction)
inputs = tokenizer.encode(input_prompt, return_tensors="pt").to(device)
outputs = model.generate(inputs, max_new_tokens=1024, temperature=0, do_sample=False, repetition_penalty=1.08)

print(tokenizer.decode(outputs[0]))
```

### HTML to JSON Example

```python
schema = """
{
  "type": "object",
  "properties": {
    "title": {
      "type": "string"
    },
    "author": {
      "type": "string"
    },
    "date": {
      "type": "string"
    },
    "content": {
      "type": "string"
    }
  },
  "required": ["title", "author", "date", "content"]
}
"""

html = clean_html(html)
input_prompt = create_prompt(html, schema=schema)

inputs = tokenizer.encode(input_prompt, return_tensors="pt").to(device)
outputs = model.generate(inputs, max_new_tokens=1024, temperature=0, do_sample=False, repetition_penalty=1.08)

print(tokenizer.decode(outputs[0]))
```

## AWS Sagemaker & Azure Marketplace & Google Cloud Platform

Coming soon.