--- model-index: - name: jiazhengli/Qwen2.5-7B-RoleMRC-sft results: [] datasets: - Junrulu/RoleMRC language: - en base_model: Qwen/Qwen2.5-7B license: llama3 --- # Model Card for Qwen2.5-7B-RoleMRC-sft This repository provides a fine-tuned version of Qwen2.5-7B, using our proposed [RoleMRC dataset](https://huggingface.co/datasets/Junrulu/RoleMRC). We obey all licenses mentioned in Qwen 2's work. ## Performance Reference-based Evaluation Result | Model | BLEU | ROUGE-1 | ROUGE-2 | ROUGE-L | ROUGE-Lsum | METEOR | BERTScore F1 | |--------------------------------|--------|---------|---------|---------|------------|--------|-----------| | Qwen2.5-7B-Instruct | 0.0224 | 0.2283 | 0.0621 | 0.1518 | 0.1599 | 0.2490 | 0.8471 | | | Qwen2.5-72B-Instruct | 0.0245 | 0.2350 | 0.0656 | 0.1554 | 0.1660 | 0.2579 | 0.8485 | | | **Qwen2.5-7B-RoleMRC-SFT** | 0.1963 | 0.4764 | 0.2744 | 0.3959 | 0.3968 | 0.4337 | 0.9063 | | | Qwen2.5-7B-RoleMRC-DPO | 0.1244 | 0.4178 | 0.1916 | 0.3164 | 0.3177 | 0.4205 | 0.8931 | | General Benchmark | Model | GSM8K 8-shot | Math 4-shot | GPQA 0-shot | IFEval 3-shot | MMLU-Pro 5-shot | MMLU 0-shot | PiQA 3-shot | MUSR 0-shot | TruthfulQA 3-shot| / Avg. | |----------------------------------------|-------------|------------|-------------|--------------|---------------|-----------|-----------|-----------|------------------------|------| | QWEN2.5-7B | 78.7 | 36.78 | 16.74 | 38.25 | 44.87 | 71.75 | 81.23 | 44.31 | 38.8 | 50.16 | | QWEN2.5-7B-INSTRUCT | 81.2 | 40.28 | 13.39 | 65.71 | 40.85 | 71.76 | 80.25 | 42.86 | 47.86 | 53.8 | | **QWEN2.5-7B-ROLEMRC-SFT** | 78.54 | 32.7 | 16.52 | 42.81 | 43.43 | 71.19 | 80.63 | 45.11 | 37.58 | 49.83 | | QWEN2.5-7B-ROLEMRC-DPO | 79.38 | 32.72 | 18.97 | 47.96 | 43.39 | 71.21 | 80.36 | 45.37 | 39.41 | 50.97 | ## Evaluation Details Five conditional benchmarks, using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness): - GSM8K: 8-shot, report strict match - IFEval: 3-shot, report instruction-level strict accuracy - PiQA: 3-shot, report accuracy - MMLU: 0-shot, report normalized accuracy - TruthfulQA: 3-shot, report accuracy of single-true mc1 setting ## Input Format The model is trained to use the following format: ``` <|start_header_id|>user<|end_header_id|> {PROMPT}<|eot_id|> <|start_header_id|>assistant<|end_header_id|> {Response} ``` ## Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-5 - total_train_batch_size: 16 - optimizer: AdamW with beta1 0.9, beta2 0.999 and epsilon 1e-8 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.04 - num_epochs: 1.0