--- base_model: mistralai/Mistral-7B-v0.1 datasets: - HuggingFaceH4/ultrafeedback_binarized library_name: peft license: apache-2.0 tags: - alignment-handbook - trl - dpo - generated_from_trainer model-index: - name: zephyr-7b-dpo-qlora results: [] --- # zephyr-7b-dpo-qlora This model is a fine-tuned version of [alignment-handbook/zephyr-7b-sft-qlora](https://huggingface.co/alignment-handbook/zephyr-7b-sft-qlora) on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set: - Loss: 0.5020 - Rewards/chosen: -2.1712 - Rewards/rejected: -2.9620 - Rewards/accuracies: 0.7054 - Rewards/margins: 0.7908 - Logps/rejected: -535.7245 - Logps/chosen: -475.6829 - Logits/rejected: -1.1754 - Logits/chosen: -1.2812 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 6 - gradient_accumulation_steps: 4 - total_train_batch_size: 96 - total_eval_batch_size: 24 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6099 | 0.1570 | 100 | 0.5999 | -0.4571 | -0.6755 | 0.6369 | 0.2184 | -307.0734 | -304.2707 | -2.1308 | -2.2191 | | 0.5468 | 0.3140 | 200 | 0.5354 | -1.2063 | -1.7025 | 0.6815 | 0.4962 | -409.7740 | -379.1950 | -1.5157 | -1.6078 | | 0.5195 | 0.4710 | 300 | 0.5227 | -1.5981 | -2.2831 | 0.7083 | 0.6849 | -467.8293 | -418.3782 | -1.3523 | -1.4527 | | 0.4895 | 0.6279 | 400 | 0.5142 | -1.8555 | -2.6654 | 0.6994 | 0.8099 | -506.0622 | -444.1171 | -1.1070 | -1.2180 | | 0.4992 | 0.7849 | 500 | 0.5019 | -2.3330 | -3.1029 | 0.7054 | 0.7699 | -549.8137 | -491.8629 | -1.1520 | -1.2589 | | 0.5001 | 0.9419 | 600 | 0.5021 | -2.1712 | -2.9608 | 0.7083 | 0.7896 | -535.6057 | -475.6837 | -1.1768 | -1.2825 | ### Framework versions - PEFT 0.13.2 - Transformers 4.45.2 - Pytorch 2.1.2 - Datasets 3.0.1 - Tokenizers 0.20.1