Commit
·
b5d999a
1
Parent(s):
363c142
Initial commit
Browse files- .gitignore +1 -0
- Dockerfile +17 -0
- face.py +93 -0
- weights/checkpoints/20180402-114759-vggface2.pt +3 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
.DS_Store
|
Dockerfile
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.9-slim-bullseye
|
2 |
+
|
3 |
+
RUN pip install --upgrade pip
|
4 |
+
RUN pip install facenet-pytorch
|
5 |
+
|
6 |
+
# Create working directory
|
7 |
+
RUN mkdir -p /usr/src/app
|
8 |
+
WORKDIR /usr/src/app
|
9 |
+
|
10 |
+
# Copy weights
|
11 |
+
ENV TORCH_HOME=/weights
|
12 |
+
COPY /weights /weights
|
13 |
+
|
14 |
+
# Copy source code
|
15 |
+
COPY face.py /usr/src/app
|
16 |
+
|
17 |
+
ENTRYPOINT ["python3", "/usr/src/app/face.py", "--input", "/in", "--output", "/out"]
|
face.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import argparse
|
3 |
+
from facenet_pytorch import MTCNN, InceptionResnetV1
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
# If required, create a face detection pipeline using MTCNN:
|
7 |
+
mtcnn = MTCNN(image_size=400, margin=150)
|
8 |
+
|
9 |
+
# Create an inception resnet (in eval mode):
|
10 |
+
resnet = InceptionResnetV1(pretrained='vggface2').eval()
|
11 |
+
|
12 |
+
def process(in_file, out_file, box=None):
|
13 |
+
img = Image.open(in_file)
|
14 |
+
|
15 |
+
if box is None:
|
16 |
+
boxes, probs = mtcnn.detect(img)
|
17 |
+
|
18 |
+
if boxes is None:
|
19 |
+
print("Face not found, using default box")
|
20 |
+
boxes = [[0,0,img.size[0],img.size[0]]]
|
21 |
+
else:
|
22 |
+
boxes = sorted(zip(probs, boxes), reverse=True)
|
23 |
+
boxes = [box[1] for box in boxes]
|
24 |
+
|
25 |
+
box = boxes[0]
|
26 |
+
|
27 |
+
img_pad = 25
|
28 |
+
|
29 |
+
box_l = int(box[0]) - img_pad
|
30 |
+
box_t = int(box[1]) - img_pad
|
31 |
+
box_r = int(box[2]) + img_pad
|
32 |
+
box_b = int(box[3]) + img_pad
|
33 |
+
|
34 |
+
# normalize box coordinates
|
35 |
+
box_l = max(0, box_l)
|
36 |
+
box_t = max(0, box_t)
|
37 |
+
box_r = min(img.size[0], box_r)
|
38 |
+
box_b = min(img.size[1], box_b)
|
39 |
+
|
40 |
+
# calculate box width and height
|
41 |
+
box_w = int(box_r-box_l)
|
42 |
+
box_h = int(box_b-box_t)
|
43 |
+
|
44 |
+
print("image size", img.size)
|
45 |
+
print("original box", (box_l, box_t, box_r, box_b))
|
46 |
+
print("original box size", box_w, "x", box_h)
|
47 |
+
|
48 |
+
# find the smaller dimension
|
49 |
+
box_d = min(box_w, box_h)
|
50 |
+
|
51 |
+
# adjust box coordinates to be square
|
52 |
+
box_l = int(box_l + (box_w - box_d)/2)
|
53 |
+
box_t = int(box_t + (box_h - box_d)/2)
|
54 |
+
box_r = int(box_l + box_d)
|
55 |
+
box_b = int(box_t + box_d)
|
56 |
+
|
57 |
+
box_w = int(box_r-box_l)
|
58 |
+
box_h = int(box_b-box_t)
|
59 |
+
|
60 |
+
print("adjusted box", (box_l, box_t, box_r, box_b))
|
61 |
+
print("adjusted size", box_w, "x", box_h)
|
62 |
+
|
63 |
+
im_new = img.crop((box_l, box_t, box_r, box_b)).resize((300,300), Image.Resampling.LANCZOS)
|
64 |
+
im_new.save(out_file)
|
65 |
+
|
66 |
+
def auto_crop(input_dir, output_dir):
|
67 |
+
if os.path.isdir(output_dir) == False:
|
68 |
+
print("Error: output directory does not exist")
|
69 |
+
return
|
70 |
+
# iterate over all files in the input directory
|
71 |
+
if os.path.isdir(input_dir):
|
72 |
+
for file in os.listdir(input_dir):
|
73 |
+
try:
|
74 |
+
in_file = os.path.join(input_dir, file)
|
75 |
+
out_file = os.path.join(output_dir, file)
|
76 |
+
print("Processing file", in_file)
|
77 |
+
process(in_file, out_file)
|
78 |
+
except KeyboardInterrupt:
|
79 |
+
raise
|
80 |
+
except:
|
81 |
+
print("Error processing file", file)
|
82 |
+
else:
|
83 |
+
path, file = os.path.split(input_dir)
|
84 |
+
print("Processing file", file)
|
85 |
+
out_file = os.path.join(output_dir, file)
|
86 |
+
process(input_dir, out_file)
|
87 |
+
|
88 |
+
if __name__ == '__main__':
|
89 |
+
parser = argparse.ArgumentParser(description="Batch Auto Cropping")
|
90 |
+
parser.add_argument('-i', '--input', help='Input folder', required=True)
|
91 |
+
parser.add_argument('-o', '--output', help='Output folder', required=True)
|
92 |
+
args = parser.parse_args()
|
93 |
+
auto_crop(args.input, args.output)
|
weights/checkpoints/20180402-114759-vggface2.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:281cebca8662831adb987a874bdcb36e73f5b1c6dc5ee5878f305e985625d99b
|
3 |
+
size 111898327
|