{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0e148962a0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652708836.7622783, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABqdiz64Ous8r0QJveGCZzyQSJE+91eHvQAAgD8AAIA/DTxyvnvx2Tv6Spq7asYuOfHXZb0oO7E6AACAPwAAgD/myD29SJGGujpyBzxTXco2XVtuO5GdtjUAAIA/AACAP1q9Xb5sjZG7crRCO6PvbjjgTAo9FHAouQAAgD8AAIA/jbjJvSnMF7o58rA7gncvN6XdFDtiaB42AACAPwAAgD9AHP+9lv1SP5io1L0Bvq6+KiMQPBDrQj0AAAAAAAAAAGbKNT1csxm6rsaBu4cKXjyFCay7nlhCvQAAgD8AAIA/02dWvhmQFz+OHdM9sbSZvjfHdLyAUBI+AAAAAAAAAABmwoo7jWnBP82Pbjwh3Z+7l5IEvFVCxzwAAAAAAAAAAG3MlT45FYs/B7QFPx3ZE78IvJ8+tSGoPQAAAAAAAAAAzcPCPIUlgTo4wGE7Dr8TPU8e0ToVQxE8AACAPwAAgD+zxZC9UijruaFeC7rTLnS28SGcOz3bITkAAIA/AACAP5MOU75KMwY81lQTukRw1zdahoy9Ux8sOQAAgD8AAIA/WmzFvQrHIrmelYq7rAi8tn7STzrRt6I6AACAPwAAgD9mlss9SO+guvu8K7yCy702QnCsOvgoKbYAAIA/AACAP5p3jTxheN49yFyIvZwxhr2P6Y88l1ktvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIhnDMsiegW0CUhpRSlIwBbJRN6AOMAXSUR0CHxAk4WDYidX2UKGgGaAloD0MIqFMe3QhLVECUhpRSlGgVTegDaBZHQIfP5Cv5gw51fZQoaAZoCWgPQwjzrnrAPAhiQJSGlFKUaBVN6ANoFkdAh9FdOh0yQHV9lChoBmgJaA9DCN4dGavNf0vAlIaUUpRoFUvhaBZHQIfWYn6VMVV1fZQoaAZoCWgPQwiJmX0eox1ZQJSGlFKUaBVN6ANoFkdAh9c7PIGQjnV9lChoBmgJaA9DCHJO7KF9tkZAlIaUUpRoFU3oA2gWR0CH12JF9a2XdX2UKGgGaAloD0MI1siutIxEI0CUhpRSlGgVS65oFkdAh+1ju0CzTnV9lChoBmgJaA9DCOc1dolqPmRAlIaUUpRoFU3oA2gWR0CH90CcwxnGdX2UKGgGaAloD0MIa5+Ox4wrYECUhpRSlGgVTegDaBZHQIgAShzvJBB1fZQoaAZoCWgPQwgSv2INFypbQJSGlFKUaBVN6ANoFkdAiEAUZNwiq3V9lChoBmgJaA9DCFmis8wirF9AlIaUUpRoFU3oA2gWR0CISX/z8P4EdX2UKGgGaAloD0MI7bsi+F8xYECUhpRSlGgVTegDaBZHQIhNdsFdLQJ1fZQoaAZoCWgPQwibHD7pxFRiQJSGlFKUaBVN6ANoFkdAiFufXf642HV9lChoBmgJaA9DCJYkz/X9N2NAlIaUUpRoFU3oA2gWR0CIZOq2BreqdX2UKGgGaAloD0MIkiOdgZFCVkCUhpRSlGgVTegDaBZHQIh1fU8V58l1fZQoaAZoCWgPQwga9+Y3zGJiQJSGlFKUaBVN6ANoFkdAiILzDwYtQXV9lChoBmgJaA9DCHb/WIgOeVlAlIaUUpRoFU3oA2gWR0CIknTyauwHdX2UKGgGaAloD0MIa39ne/RyWECUhpRSlGgVTegDaBZHQIiYbR0EHMV1fZQoaAZoCWgPQwhU4c/wZsdaQJSGlFKUaBVN6ANoFkdAiKVcj7hvSHV9lChoBmgJaA9DCO/lPjkKDmFAlIaUUpRoFU3oA2gWR0CIpv4SHuZ1dX2UKGgGaAloD0MIPEolPKEsXECUhpRSlGgVTegDaBZHQIiteHBUJfJ1fZQoaAZoCWgPQwg5ud+hKH1cQJSGlFKUaBVN6ANoFkdAiK2nv+fh/HV9lChoBmgJaA9DCOXwSScSE1RAlIaUUpRoFU3oA2gWR0CIxqT/yXlbdX2UKGgGaAloD0MI5bM8D+41akCUhpRSlGgVTXMCaBZHQIjK8L0Bfa91fZQoaAZoCWgPQwhu3jgpzINTQJSGlFKUaBVN6ANoFkdAiNBDPOY6XHV9lChoBmgJaA9DCFqbxvZaJF9AlIaUUpRoFU3oA2gWR0CI2NSiudPMdX2UKGgGaAloD0MIjnkdccgiWECUhpRSlGgVTegDaBZHQIjhrhgmZ3N1fZQoaAZoCWgPQwiAETRmEo9ZQJSGlFKUaBVN6ANoFkdAiSFxvm5lOHV9lChoBmgJaA9DCMAklSnmEBBAlIaUUpRoFU3oA2gWR0CJJXLA57w8dX2UKGgGaAloD0MIhZm2f2UuYkCUhpRSlGgVTegDaBZHQIk0Rvze41B1fZQoaAZoCWgPQwiugEI9fY9XQJSGlFKUaBVN6ANoFkdAiU6j15B1LnV9lChoBmgJaA9DCInsgyyLwGBAlIaUUpRoFU3oA2gWR0CJXCbIcR16dX2UKGgGaAloD0MIvTrHgOwyW0CUhpRSlGgVTegDaBZHQIlrj7di2Dx1fZQoaAZoCWgPQwjWq8jogPZLQJSGlFKUaBVLv2gWR0CJbyLuQZGbdX2UKGgGaAloD0MIOs5twr3TXkCUhpRSlGgVTegDaBZHQIlxHqs2ehB1fZQoaAZoCWgPQwijdOlfkjNXQJSGlFKUaBVN6ANoFkdAiX36Ss8xK3V9lChoBmgJaA9DCN0lcVZEWlFAlIaUUpRoFU3oA2gWR0CJf7w5vLowdX2UKGgGaAloD0MIwR9+/nu3XUCUhpRSlGgVTegDaBZHQImGbcGkep51fZQoaAZoCWgPQwj6DKg3I9ljQJSGlFKUaBVN6ANoFkdAiYaYzBRAKXV9lChoBmgJaA9DCBNHHogs3FxAlIaUUpRoFU3oA2gWR0CJntzRx95RdX2UKGgGaAloD0MIW5VE9kFxW0CUhpRSlGgVTegDaBZHQImi2SKWLP51fZQoaAZoCWgPQwg6IAn7dhY+QJSGlFKUaBVNAQFoFkdAiaX1AZ88cXV9lChoBmgJaA9DCI7myMov9l9AlIaUUpRoFU3oA2gWR0CJp+9U0elsdX2UKGgGaAloD0MI2SeAYuTdYECUhpRSlGgVTegDaBZHQImv22kSElF1fZQoaAZoCWgPQwjtDikGSA5GQJSGlFKUaBVN6ANoFkdAibgr+glF+nV9lChoBmgJaA9DCAX9hR4xWltAlIaUUpRoFU3oA2gWR0CJ+UdNFjNIdX2UKGgGaAloD0MIr9AHy9gAWECUhpRSlGgVTegDaBZHQIn8x5iVjZt1fZQoaAZoCWgPQwi14EVfQT9gQJSGlFKUaBVN6ANoFkdAigpoDPnjhnV9lChoBmgJaA9DCL2L9+N2/2RAlIaUUpRoFU3oA2gWR0CKNB0EHMUzdX2UKGgGaAloD0MIQE0tW+slW0CUhpRSlGgVTegDaBZHQIpHEz/IbOx1fZQoaAZoCWgPQwi8PnPWp31dQJSGlFKUaBVN6ANoFkdAikt1TR6WxHV9lChoBmgJaA9DCJc3h2u1omJAlIaUUpRoFU3oA2gWR0CKTYPikwevdX2UKGgGaAloD0MIwxA5fb1WY0CUhpRSlGgVTegDaBZHQIpaes3hn8N1fZQoaAZoCWgPQwiaC1wea5Y+QJSGlFKUaBVL72gWR0CKYK0BwMpgdX2UKGgGaAloD0MIfUCgM2k/V0CUhpRSlGgVTegDaBZHQIpjGe8PFvR1fZQoaAZoCWgPQwjylqsfG3dhQJSGlFKUaBVN6ANoFkdAimNFbeMyanV9lChoBmgJaA9DCJD3qpUJhmFAlIaUUpRoFU3oA2gWR0CKfoSAYpDvdX2UKGgGaAloD0MIO8Q/bGkHYUCUhpRSlGgVTegDaBZHQIqDOcWj4591fZQoaAZoCWgPQwii0/NuLNZkQJSGlFKUaBVN6ANoFkdAioaVCXyAhHV9lChoBmgJaA9DCP6ABwYQUl5AlIaUUpRoFU3oA2gWR0CKiM7gbZOBdX2UKGgGaAloD0MIw0Xu6erEXkCUhpRSlGgVTegDaBZHQIqRBYFJQLx1fZQoaAZoCWgPQwgUlQ1rKsdWQJSGlFKUaBVN6ANoFkdAipjn4wh4dXV9lChoBmgJaA9DCNIYraMqp2FAlIaUUpRoFU3oA2gWR0CK1wKrq+rVdX2UKGgGaAloD0MI9nr3x3uoXECUhpRSlGgVTegDaBZHQIraZNXYDkl1fZQoaAZoCWgPQwjEJ51IMIdGQJSGlFKUaBVL9WgWR0CK3PZElVtGdX2UKGgGaAloD0MISdkiabcvYkCUhpRSlGgVTegDaBZHQIrm0rI5o5B1fZQoaAZoCWgPQwh2pWWk3sc7wJSGlFKUaBVNBwFoFkdAiuuXn6l+E3V9lChoBmgJaA9DCGrbMAqCiltAlIaUUpRoFU3oA2gWR0CLG15le4TcdX2UKGgGaAloD0MIyOvBpPihXECUhpRSlGgVTegDaBZHQIsfWycCo0h1fZQoaAZoCWgPQwgUz9kCQvZfQJSGlFKUaBVN6ANoFkdAiyFXvhIe5nV9lChoBmgJaA9DCGwldJfEqmNAlIaUUpRoFU3oA2gWR0CLLYeTV2A5dX2UKGgGaAloD0MI1sQCX9HaVkCUhpRSlGgVTegDaBZHQIszm4gA6uJ1fZQoaAZoCWgPQwiW0cjnFWpaQJSGlFKUaBVN6ANoFkdAizXqWszVMHV9lChoBmgJaA9DCBe4PNYMJ2JAlIaUUpRoFU3oA2gWR0CLNhNM495hdX2UKGgGaAloD0MIUwWjkjoFM0CUhpRSlGgVS/hoFkdAi0FXKB/ZunV9lChoBmgJaA9DCJ8cBYiC7T3AlIaUUpRoFUvxaBZHQItDfnGKhtd1fZQoaAZoCWgPQwgx0/avLBNjQJSGlFKUaBVN6ANoFkdAi02roW56MXV9lChoBmgJaA9DCKG8j6M54lBAlIaUUpRoFUvjaBZHQItOkmICU5d1fZQoaAZoCWgPQwiDUUmdgP9dQJSGlFKUaBVN6ANoFkdAi1RdZA6dUnV9lChoBmgJaA9DCAw9YvTcHWFAlIaUUpRoFU3oA2gWR0CLVlsgMc6vdX2UKGgGaAloD0MIXYlA9Q9xZUCUhpRSlGgVTegDaBZHQItliZx7zCl1fZQoaAZoCWgPQwhr14S0xvgxQJSGlFKUaBVNEAFoFkdAi2qTDXOGCnV9lChoBmgJaA9DCHHK3Hwjc11AlIaUUpRoFU3oA2gWR0CLbknqmj0udX2UKGgGaAloD0MIHOp3YeugYECUhpRSlGgVTegDaBZHQIunx44ZMtd1fZQoaAZoCWgPQwh+HThnxIxiQJSGlFKUaBVN6ANoFkdAi6qRkEs8PnV9lChoBmgJaA9DCBgnvtpR+VdAlIaUUpRoFU3oA2gWR0CLtK22G7BgdX2UKGgGaAloD0MIOutTjsngXECUhpRSlGgVTegDaBZHQIu5dSl3yI51fZQoaAZoCWgPQwidZoF2h8leQJSGlFKUaBVN6ANoFkdAi++hU70WdnV9lChoBmgJaA9DCCmzQSYZQlVAlIaUUpRoFU3oA2gWR0CMBWBVdX1bdX2UKGgGaAloD0MIIuF7f4MMX0CUhpRSlGgVTegDaBZHQIwISTY/Vy51fZQoaAZoCWgPQwjisDTwo3RjQJSGlFKUaBVN6ANoFkdAjAh8VQAMlXV9lChoBmgJaA9DCK7zb5f9f2FAlIaUUpRoFU3oA2gWR0CMFmOwxFiKdX2UKGgGaAloD0MI0sYRa/GmXkCUhpRSlGgVTegDaBZHQIwjs4YJmd11fZQoaAZoCWgPQwjo2az6XDJlQJSGlFKUaBVN6ANoFkdAjCSkAYHgP3V9lChoBmgJaA9DCMfa39meq2NAlIaUUpRoFU3oA2gWR0CMKtI065oXdX2UKGgGaAloD0MIf4l46/wQXUCUhpRSlGgVTegDaBZHQIws7FS88Ld1fZQoaAZoCWgPQwhMGqN11DFhQJSGlFKUaBVN6ANoFkdAjD25vUBnz3V9lChoBmgJaA9DCBAf2PFfo1tAlIaUUpRoFU3oA2gWR0CMQx4vexfOdX2UKGgGaAloD0MI1a4JaY1yXkCUhpRSlGgVTegDaBZHQIxG2kP+XJJ1fZQoaAZoCWgPQwh8RiI0gk9aQJSGlFKUaBVN6ANoFkdAjEpymygPE3VlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}