File size: 1,849 Bytes
c28ee04 4f7c0e8 c28ee04 4f7c0e8 c28ee04 4f7c0e8 c28ee04 4f7c0e8 b40403f 4f7c0e8 08f3cef 4f7c0e8 b40403f 4f7c0e8 b40403f 4f7c0e8 b40403f 4f7c0e8 5dff0f5 c28ee04 6e4265f 4f7c0e8 6e4265f c28ee04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: mit
base_model: microsoft/speecht5_vc
tags:
- generated_from_trainer
datasets:
- audiofolder
model-index:
- name: SpeechT5_finetuned_kha
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# SpeechT5_finetuned_kha
This model is a fine-tuned version of [microsoft/speecht5_vc](https://huggingface.co/microsoft/speecht5_vc) on the audiofolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4733
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 300
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:--------:|:----:|:---------------:|
| 0.544 | 36.8664 | 1000 | 0.5145 |
| 0.5013 | 73.7327 | 2000 | 0.4800 |
| 0.4754 | 110.5991 | 3000 | 0.4705 |
| 0.4651 | 147.4654 | 4000 | 0.4710 |
| 0.456 | 184.3318 | 5000 | 0.4699 |
| 0.446 | 221.1982 | 6000 | 0.4702 |
| 0.443 | 258.0645 | 7000 | 0.4714 |
| 0.4437 | 294.9309 | 8000 | 0.4733 |
### Framework versions
- Transformers 4.43.3
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.19.1
|