File size: 1,849 Bytes
c28ee04
4f7c0e8
 
c28ee04
 
 
 
 
4f7c0e8
c28ee04
 
 
 
 
 
4f7c0e8
c28ee04
4f7c0e8
 
 
b40403f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f7c0e8
08f3cef
4f7c0e8
b40403f
4f7c0e8
 
b40403f
 
4f7c0e8
 
b40403f
 
 
 
4f7c0e8
 
 
 
 
 
 
 
 
 
5dff0f5
 
c28ee04
 
6e4265f
4f7c0e8
6e4265f
c28ee04
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: mit
base_model: microsoft/speecht5_vc
tags:
- generated_from_trainer
datasets:
- audiofolder
model-index:
- name: SpeechT5_finetuned_kha
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# SpeechT5_finetuned_kha

This model is a fine-tuned version of [microsoft/speecht5_vc](https://huggingface.co/microsoft/speecht5_vc) on the audiofolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4733

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 300
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch    | Step | Validation Loss |
|:-------------:|:--------:|:----:|:---------------:|
| 0.544         | 36.8664  | 1000 | 0.5145          |
| 0.5013        | 73.7327  | 2000 | 0.4800          |
| 0.4754        | 110.5991 | 3000 | 0.4705          |
| 0.4651        | 147.4654 | 4000 | 0.4710          |
| 0.456         | 184.3318 | 5000 | 0.4699          |
| 0.446         | 221.1982 | 6000 | 0.4702          |
| 0.443         | 258.0645 | 7000 | 0.4714          |
| 0.4437        | 294.9309 | 8000 | 0.4733          |


### Framework versions

- Transformers 4.43.3
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.19.1