File size: 4,079 Bytes
6ea1872
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
955a0f7
0fb4728
 
 
097eff6
 
 
 
 
 
 
 
 
 
 
 
6ea1872
097eff6
6e30bb0
 
 
097eff6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7351e0c
097eff6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e807790
097eff6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
---
library_name: peft
license: mit
language:
- da
- sv
base_model:
- AI-Sweden-Models/Llama-3-8B-instruct
pipeline_tag: sentence-similarity
tags:
- text-embedding
- embeddings
- information-retrieval
- beir
- text-classification
- language-model
- text-clustering
- text-semantic-similarity
- text-evaluation
- text-reranking
- feature-extraction
- sentence-similarity
- Sentence Similarity
datasets:
- jealk/scandi-wiki-combined
- jealk/wiki40b-da-clean

---
## The Tech Collective - Unsupervised Embedding model (Danish)

### Model Description

Unsupervised model for sentence embeddings. 

- **Developed by:** Jesper Alkestrup, The Tech Collective
- **Model type:** Embedding model
- **Language(s) (NLP):** Danish
- **Finetuned from model :** AI-Sweden-Models/Llama-3-8B-instruct
- **Finetuning procedure:** LLM2Vec


Trained by using the approach outlined in the paper **LLM2Vec: Large Language Models Are Secretly Powerful Text Encoders**. 

LoRa Finetuning 1000 steps of MNTP on cleaned Danish Wikipedia https://huggingface.co/datasets/jealk/wiki40b-da-clean
LoRa Finetuning 1000 steps of SimCSE on sentences from Scandivian Wikipedia (da, nn, nb, sv, fo, is): https://huggingface.co/datasets/jealk/scandi-wiki-combined (*Sentence subset*)

Credits for code-repo used to finetune this model https://github.com/McGill-NLP/llm2vec .

Thanks to **Arrow Denmark** and **Nvidia** for sponsoring the compute used to train this model.

Requires the llm2vec package to encode sentences. Credits to https://huggingface.co/McGill-NLP/LLM2Vec-Meta-Llama-3-8B-Instruct-mntp-supervised for the below instructions:

## Installation
```bash
pip install llm2vec
```

## Usage
```python
from llm2vec import LLM2Vec

import torch
from transformers import AutoTokenizer, AutoModel, AutoConfig
from peft import PeftModel

# Loading base Llama model, along with custom code that enables bidirectional connections in decoder-only LLMs. MNTP LoRA weights are merged into the base model.
tokenizer = AutoTokenizer.from_pretrained(
    "jealk/llm2vec-da-mntp"
)
config = AutoConfig.from_pretrained(
    "jealk/llm2vec-da-mntp", trust_remote_code=True
)
model = AutoModel.from_pretrained(
    "jealk/llm2vec-da-mntp",
    trust_remote_code=True,
    config=config,
    torch_dtype=torch.bfloat16,
    device_map="cuda" if torch.cuda.is_available() else "cpu",
)
model = PeftModel.from_pretrained(
    model,
    "jealk/llm2vec-da-mntp",
)
model = model.merge_and_unload()  # This can take several minutes on cpu

# Loading supervised model. This loads the trained LoRA weights on top of MNTP model. Hence the final weights are -- Base model + MNTP (LoRA) + supervised (LoRA).
model = PeftModel.from_pretrained(
    model, "jealk/TTC-unsupervised-1"
)

# Wrapper for encoding and pooling operations
l2v = LLM2Vec(model, tokenizer, pooling_mode="mean", max_length=8124)

# Encoding queries using instructions
instruction = (
    "Given a web search query, retrieve relevant passages that answer the query:"
)
queries = [
    [instruction, "how much protein should a female eat"],
    [instruction, "summit define"],
]
q_reps = l2v.encode(queries)

# Encoding documents. Instruction are not required for documents
documents = [
    "As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.",
    "Definition of summit for English Language Learners. : 1  the highest point of a mountain : the top of a mountain. : 2  the highest level. : 3  a meeting or series of meetings between the leaders of two or more governments.",
]
d_reps = l2v.encode(documents)

# Compute cosine similarity
q_reps_norm = torch.nn.functional.normalize(q_reps, p=2, dim=1)
d_reps_norm = torch.nn.functional.normalize(d_reps, p=2, dim=1)
cos_sim = torch.mm(q_reps_norm, d_reps_norm.transpose(0, 1))

print(cos_sim)
"""
tensor([[0.6470, 0.1619],
        [0.0786, 0.5844]])
"""
```