ppo-LunarLander-v2 / config.json
jchristian1's picture
Add trained PPO model for LunarLander-v2 with evaluation metrics and replay video
6d91d92 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a59680802c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a5968080360>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a5968080400>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a59680804a0>", "_build": "<function ActorCriticPolicy._build at 0x7a5968080540>", "forward": "<function ActorCriticPolicy.forward at 0x7a59680805e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a5968080680>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a5968080720>", "_predict": "<function ActorCriticPolicy._predict at 0x7a59680807c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a5968080860>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a5968080900>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a59680809a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a5968199b80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1739831291643562410, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAADgrwcu7I/ZkqXvvQGO76oEwS7M9nBvQAAAAAAAAAAk3ogPmxYRz6raFK+CWbrvj+ZAT6aphK+AAAAAAAAAACmGrA9j95eupNzZbvU0CS1GV2zurgSlTQAAIA/AAAAAABs5jv7Z+M7aM+bvVcDqr6jNeW8AMU4vAAAAAAAAAAApl2ePsQeOD5g1J6+uaS8vnIXTD69UUS+AAAAAAAAAABN5xk+ckEUP1rBFj4tFVS/o7uYPq7FPj0AAAAAAAAAAHMt870KmwO7TtwRu2qoU7mqdes7bsU3OgAAgD8AAIA/ZkUzPbSBhbwNVoy7T2FPPJ3odTz94R89AACAPwAAgD/af9U9j3ZUuvsK0L1ENgU8HHRhu0vO6LwAAAAAAACAP7NsAj4eG+o9KRcvviq5Xr4KaU89FnslvgAAAAAAAAAAjYXQvdKYjrvhozc9bqIcPbnv3LzOWgI+AACAPwAAgD+Nyxa+UJSWP7iSEL8c2yS/Nb40vnMYcb4AAAAAAAAAADPzJzyu0bU/AmN6Pt8riD3V7q+7UhnVPAAAAAAAAAAADXsnPs46krxeGm+6/DuzONw6BL7SlKQ5AACAPwAAgD8mibc9g3NhPfWiDb5gUdq+qrBkPYX+wr0AAAAAAAAAAIakN74MT5o+Mv0CPrafxL6play9YtaXPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHOHmd/axouMAWyUS8yMAXSUR0CZHY1fE4vOdX2UKGgGR0BzPNnAZbY9aAdL0mgIR0CZHiT6zmfXdX2UKGgGR0ByQ4rWiDdyaAdL02gIR0CZHrBSDRMOdX2UKGgGR0BxEWwB5ooNaAdL22gIR0CZHxZjx0+1dX2UKGgGR0BxZJWHUMG5aAdLsmgIR0CZHzjW07bMdX2UKGgGR0BwwVpGnXNDaAdLx2gIR0CZH/8iwB5pdX2UKGgGR0BzhRggHNX6aAdL8GgIR0CZIFCJ40MxdX2UKGgGR0BvZO4mTkhiaAdLqmgIR0CZIHYraufVdX2UKGgGR0BxsrKzRhMKaAdLm2gIR0CZIIRPXTVldX2UKGgGR0B0ADAymALBaAdLw2gIR0CZIJoQnQY2dX2UKGgGR0Bwwcl7dBSlaAdLj2gIR0CZIKrUb1h9dX2UKGgGR0ByaMkUsWfsaAdLqmgIR0CZIMw7DEWJdX2UKGgGR0BykdhMJx//aAdLsGgIR0CZINrtmcvvdX2UKGgGR0BxqW4SYgJUaAdLvWgIR0CZIUq33HrAdX2UKGgGR0Bw2YFNcnmaaAdL3GgIR0CZIZSB9TgmdX2UKGgGR0BxxLin5zo2aAdLumgIR0CZIgLmp2lmdX2UKGgGR0Bvg4FNcnmaaAdLpWgIR0CZIh5NoJzDdX2UKGgGR0BxEh2OhkAhaAdLlGgIR0CZIkMkyDZldX2UKGgGR0BzW6JLuhK2aAdL9WgIR0CZIozjWCmNdX2UKGgGR0Bu73dsSCe3aAdLn2gIR0CZI5FtsN2DdX2UKGgGR0BwpXhP0qYraAdLtmgIR0CZI8sV+I/JdX2UKGgGR0BwOEwAU+LWaAdLrWgIR0CZJCcRDkU9dX2UKGgGR0BvDyNn5BToaAdLsmgIR0CZJHPxhDw6dX2UKGgGR0Bwhk7jkuHvaAdLvWgIR0CZJHsRQJokdX2UKGgGR0Bx+FNyo4uLaAdLrGgIR0CZJHqnm7rcdX2UKGgGR0BzH/PZ7HAAaAdLxmgIR0CZJNIGyHEddX2UKGgGR0BxvGfHxSYPaAdL2GgIR0CZJZqRU3n7dX2UKGgGR0Bw7SkBS1mbaAdLmWgIR0CZJdfW+XZ5dX2UKGgGR0BzFHNIK+i8aAdL6GgIR0CZJpK+i8FqdX2UKGgGR0Bx3CgpSaVlaAdL3GgIR0CZJqIEKVpsdX2UKGgGR0Bzq7qZ+hGpaAdL3WgIR0CZJytBOYY0dX2UKGgGR0BxJm40/GEPaAdL6WgIR0CZJ5quKXOXdX2UKGgGR0Bza40tRNypaAdL2mgIR0CZJ9GKyfL+dX2UKGgGR0ByUAe2d/ayaAdLl2gIR0CZKDMW43FUdX2UKGgGR0Byc9nctXgcaAdL0GgIR0CZKLHiFTNudX2UKGgGR0Bzj5TwUg0TaAdLsGgIR0CZKNCaZx7zdX2UKGgGR0BwzAeS0Sh8aAdLyGgIR0CZKWHmzSkTdX2UKGgGR0By7lsKsuFpaAdL7WgIR0CZKZubqhUSdX2UKGgGR0Byf27nPmgbaAdL0mgIR0CZKgiyprDZdX2UKGgGR0BzAIGhVU++aAdL72gIR0CZKgfF72L6dX2UKGgGR0Bxkk5zYEntaAdLsGgIR0CZKixjJ+2FdX2UKGgGR0ByagfcN6PbaAdLomgIR0CZKpU4aP0adX2UKGgGR0BwKm1v2oNvaAdLpGgIR0CZKpPZqVQidX2UKGgGR0BybHwTdtVJaAdL4GgIR0CZKw8JUo8ZdX2UKGgGR0BzgLvgFX7taAdLp2gIR0CZKzg5R0lrdX2UKGgGR0Byf7Pv8ZUDaAdLimgIR0CZK/YQarFPdX2UKGgGR0BwzLiHZbpvaAdLomgIR0CZLA5BC2MLdX2UKGgGR0BvhNsUIsy0aAdLomgIR0CZLMWWhRIjdX2UKGgGR0ByQTPszEaVaAdLl2gIR0CZLQ/nnuAqdX2UKGgGR0ByFNbpu/DcaAdL32gIR0CZLRkBCD28dX2UKGgGR0Bx6ApYs/Y8aAdL2mgIR0CZLSQLeANHdX2UKGgGR0BxCZt52QnyaAdLtWgIR0CZLf9XcQAddX2UKGgGR0Bx/jzXjENwaAdLl2gIR0CZLkxdIGyHdX2UKGgGR0Bjakpb2USqaAdN6ANoCEdAmS5YmG/N7nV9lChoBkdAco+fKZDzAmgHS7NoCEdAmS7qzE74jHV9lChoBkdActvOk+HJtGgHS9RoCEdAmS8Yzi0fHXV9lChoBkdAcFCK4x1xKmgHS6doCEdAmS8aXKKYRnV9lChoBkdAcSBsTnJT2mgHS9BoCEdAmS8lDv3JxXV9lChoBkdAcmO+yJKraWgHS+loCEdAmS+EWykbgnV9lChoBkdAcGDJyhi9ZmgHS7poCEdAmS+gR5C4SnV9lChoBkdAcC7j9n9NvmgHS7hoCEdAmTA841gpjXV9lChoBkdAceueXiR4hWgHS7hoCEdAmTBWCEpRXXV9lChoBkdAcTqw/xDst2gHS7poCEdAmTE8a86FNHV9lChoBkdAcjrLEk0JnmgHS8poCEdAmTFAb+98JHV9lChoBkdAcbFlgc94eWgHS6toCEdAmTGwYcebNXV9lChoBkdAb8WjWTX8O2gHS7BoCEdAmTIXiR4hU3V9lChoBkdAbuVOnEVFhGgHS5toCEdAmTJHC9AX23V9lChoBkdAcUrt5UtI1GgHS+toCEdAmTJT850bLnV9lChoBkdAc28vqC6H02gHS+5oCEdAmTJdrbg0j3V9lChoBkdAcd9yKekHlmgHS45oCEdAmTKl5rxiG3V9lChoBkdAb6dz6rNnoWgHS6loCEdAmTLXwb2lEnV9lChoBkdAcWCzQNTcZmgHS7BoCEdAmTL1u3trsXV9lChoBkdAclwOIqLCN2gHS+FoCEdAmTM+3x4IKXV9lChoBkdAcFsubI91U2gHS6FoCEdAmTPIRdyDI3V9lChoBkdAcqo+CbtqpWgHS+BoCEdAmTSbNSqEOHV9lChoBkdAck9UxEfDDWgHS8poCEdAmTTcdT5wfnV9lChoBkdAcpbHU+cH4WgHS6hoCEdAmTUMOf/WD3V9lChoBkdAcAcbC79Q42gHS5poCEdAmTWW5Yoy9HV9lChoBkdAcav5hScbzmgHS7RoCEdAmTXKGHpKSXV9lChoBkdAcKcbsniNsGgHS51oCEdAmTXUaZQYUHV9lChoBkdAYLDukUKzA2gHTegDaAhHQJk2AF0PpY91fZQoaAZHQHH7c6ij+JhoB0uhaAhHQJk2QBp5/sp1fZQoaAZHQHFT7jkuHvdoB0v3aAhHQJk2xptaY/p1fZQoaAZHQHCygnc+JP9oB0vIaAhHQJk2zJ0W/Jx1fZQoaAZHQHRA5mRNh3JoB0vBaAhHQJk3fwiJO351fZQoaAZHQHMRPcBU70ZoB0vzaAhHQJk3rqiXY151fZQoaAZHQHLkYv38GcFoB0vgaAhHQJk32/RE4Nt1fZQoaAZHQHKZbAP/aQFoB0uZaAhHQJk4JoL5RCR1fZQoaAZHQHFAq9f1HvtoB0vfaAhHQJk4tK+SKWN1fZQoaAZHQHDYsOf/WDpoB0vBaAhHQJk4zAdn0051fZQoaAZHQHKBfmYBvJloB00UAWgIR0CZON9Ujs2OdX2UKGgGR0BweI2dd3SsaAdLkWgIR0CZON+TvAoHdX2UKGgGR0Bv+rSsr/bTaAdLymgIR0CZOVU4aP0adX2UKGgGR0BvEBBcAzYVaAdLmGgIR0CZOWrKvFFVdX2UKGgGR0Bv+cWqLjxTaAdLpmgIR0CZOXJGvwEydX2UKGgGR0BweBGsmv4eaAdLumgIR0CZOa4zabnYdX2UKGgGR0BzL0xvegtfaAdL4WgIR0CZOjoysS00dX2UKGgGR0ByCu0KJEYwaAdLwGgIR0CZOrcRUWEcdX2UKGgGR0BwJP4fwI+oaAdLoWgIR0CZOx9vCMxXdX2UKGgGR0BxrWo86mwaaAdL1GgIR0CZOyD8LroodWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 380, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu124", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}