--- library_name: transformers license: llama3.1 base_model: meta-llama/Meta-Llama-3.1-8B-Instruct tags: - alignment-handbook - trl - cpo - generated_from_trainer - trl - cpo - generated_from_trainer datasets: - princeton-nlp/llama3-ultrafeedback model-index: - name: llama3.1-cpo-full-0911 results: [] --- # llama3.1-cpo-full-0911 This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on the princeton-nlp/llama3-ultrafeedback dataset. It achieves the following results on the evaluation set: - Loss: 1.5984 - Rewards/chosen: -14.3945 - Rewards/rejected: -15.5836 - Rewards/accuracies: 0.6304 - Rewards/margins: 1.1892 - Logps/rejected: -155.8365 - Logps/chosen: -143.9448 - Logits/rejected: -0.3142 - Logits/chosen: -0.3408 - Nll Loss: 0.3937 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Nll Loss | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:--------:| | 1.5867 | 0.9986 | 432 | 1.5248 | -16.0094 | -16.9746 | 0.6587 | 0.9652 | -169.7457 | -160.0941 | -0.4783 | -0.5128 | 0.4373 | | 0.7108 | 1.9994 | 865 | 1.5252 | -14.8375 | -15.9459 | 0.6500 | 1.1084 | -159.4588 | -148.3749 | -0.4403 | -0.4684 | 0.4056 | | 0.4426 | 2.9957 | 1296 | 1.5984 | -14.3945 | -15.5836 | 0.6304 | 1.1892 | -155.8365 | -143.9448 | -0.3142 | -0.3408 | 0.3937 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.3.1 - Datasets 2.21.0 - Tokenizers 0.19.1