--- language: en tags: - image-classification - pytorch - resnet - imagenet datasets: - imagenet-1k metrics: - accuracy --- # ResNet50 ImageNet Classifier This model is a ResNet50 architecture trained on the ImageNet dataset for image classification. ## Model Description - **Model Type:** ResNet50 - **Task:** Image Classification - **Training Data:** ImageNet (ILSVRC2012) - **Number of Parameters:** ~23M - **Input:** RGB images of size 224x224 ## Usage ```python from transformers import AutoFeatureExtractor, AutoModelForImageClassification import torch from PIL import Image # Load model and feature extractor model = AutoModelForImageClassification.from_pretrained("jatingocodeo/ImageNet") feature_extractor = AutoFeatureExtractor.from_pretrained("jatingocodeo/ImageNet") # Prepare image image = Image.open("path/to/image.jpg") inputs = feature_extractor(image, return_tensors="pt") # Get predictions with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits predicted_class = logits.argmax(-1).item() ``` ## Training The model was trained on the ImageNet dataset with the following configuration: - Optimizer: AdamW - Learning Rate: 0.003 with cosine scheduling - Batch Size: 256 - Data Augmentation: RandomResizedCrop, RandomHorizontalFlip, ColorJitter, RandomAffine, RandomPerspective ## Preprocessing The model expects images to be preprocessed as follows: - Resize shortest edge to 224 - Center crop to 224x224 - Normalize with mean [0.485, 0.456, 0.406] and std [0.229, 0.224, 0.225]