File size: 2,046 Bytes
bef59db
 
 
 
 
ee853f3
 
bef59db
 
 
 
 
 
 
 
 
 
 
 
ee853f3
 
bef59db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee853f3
bef59db
 
ee853f3
bef59db
 
ee853f3
bef59db
 
 
ee853f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bef59db
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: apache-2.0
base_model: google/bert_uncased_L-2_H-128_A-2
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: tiny-bert-sst2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# tiny-bert-sst2

This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2398
- Accuracy: 0.8211

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 128
- eval_batch_size: 128
- seed: 33
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 2
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 2.4029        | 0.1898 | 100  | 1.6095          | 0.7856   |
| 1.4393        | 0.3795 | 200  | 1.4015          | 0.7947   |
| 1.1136        | 0.5693 | 300  | 1.2956          | 0.8039   |
| 0.9362        | 0.7590 | 400  | 1.2324          | 0.8177   |
| 0.8388        | 0.9488 | 500  | 1.2880          | 0.8131   |
| 0.7043        | 1.1385 | 600  | 1.3109          | 0.8211   |
| 0.6489        | 1.3283 | 700  | 1.2199          | 0.8303   |
| 0.6396        | 1.5180 | 800  | 1.2270          | 0.8245   |
| 0.6284        | 1.7078 | 900  | 1.2459          | 0.8177   |
| 0.6016        | 1.8975 | 1000 | 1.2398          | 0.8211   |


### Framework versions

- Transformers 4.43.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1