Upload 27 files
Browse files- src/Qwen-encoder-1.5B/added_tokens.json +5 -0
- src/Qwen-encoder-1.5B/config.json +28 -0
- src/Qwen-encoder-1.5B/generation_config.json +6 -0
- src/Qwen-encoder-1.5B/merges.txt +0 -0
- src/Qwen-encoder-1.5B/model.safetensors.index.json +345 -0
- src/Qwen-encoder-1.5B/special_tokens_map.json +21 -0
- src/Qwen-encoder-1.5B/tokenizer.json +0 -0
- src/Qwen-encoder-1.5B/tokenizer_config.json +52 -0
- src/Qwen-encoder-1.5B/vocab.json +0 -0
- src/open_clip/__init__.py +13 -0
- src/open_clip/bpe_simple_vocab_16e6.txt.gz +3 -0
- src/open_clip/constants.py +6 -0
- src/open_clip/convert.py +190 -0
- src/open_clip/factory.py +475 -0
- src/open_clip/hf_configs.py +67 -0
- src/open_clip/hf_model.py +193 -0
- src/open_clip/model.py +782 -0
- src/open_clip/model_configs/ViT-L-14-336.json +16 -0
- src/open_clip/openai.py +90 -0
- src/open_clip/pos_embed.py +96 -0
- src/open_clip/pretrained.py +655 -0
- src/open_clip/timm_model.py +152 -0
- src/open_clip/tokenizer.py +517 -0
- src/open_clip/transform.py +407 -0
- src/open_clip/transformer.py +908 -0
- src/open_clip/utils.py +89 -0
- src/open_clip/version.py +1 -0
src/Qwen-encoder-1.5B/added_tokens.json
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"<|endoftext|>": 151643,
|
| 3 |
+
"<|im_end|>": 151645,
|
| 4 |
+
"<|im_start|>": 151644
|
| 5 |
+
}
|
src/Qwen-encoder-1.5B/config.json
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "/home/BiomikeeNew/werent4/llm2vec/output/mntp/qwen_0.5/checkpoint-120000",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"Qwen2ForCausalLM"
|
| 5 |
+
],
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"bos_token_id": 151643,
|
| 8 |
+
"eos_token_id": 151645,
|
| 9 |
+
"hidden_act": "silu",
|
| 10 |
+
"hidden_size": 1536,
|
| 11 |
+
"initializer_range": 0.02,
|
| 12 |
+
"intermediate_size": 8960,
|
| 13 |
+
"max_position_embeddings": 32768,
|
| 14 |
+
"max_window_layers": 28,
|
| 15 |
+
"model_type": "qwen2",
|
| 16 |
+
"num_attention_heads": 12,
|
| 17 |
+
"num_hidden_layers": 28,
|
| 18 |
+
"num_key_value_heads": 2,
|
| 19 |
+
"rms_norm_eps": 1e-06,
|
| 20 |
+
"rope_theta": 1000000.0,
|
| 21 |
+
"sliding_window": 32768,
|
| 22 |
+
"tie_word_embeddings": true,
|
| 23 |
+
"torch_dtype": "float32",
|
| 24 |
+
"transformers_version": "4.40.2",
|
| 25 |
+
"use_cache": true,
|
| 26 |
+
"use_sliding_window": false,
|
| 27 |
+
"vocab_size": 151936
|
| 28 |
+
}
|
src/Qwen-encoder-1.5B/generation_config.json
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 151643,
|
| 4 |
+
"eos_token_id": 151645,
|
| 5 |
+
"transformers_version": "4.40.2"
|
| 6 |
+
}
|
src/Qwen-encoder-1.5B/merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
src/Qwen-encoder-1.5B/model.safetensors.index.json
ADDED
|
@@ -0,0 +1,345 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 6174857216
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
| 7 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 8 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 9 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 10 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 11 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 12 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 15 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 16 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 17 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 18 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 19 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 20 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 21 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 22 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 23 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 24 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 25 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 26 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 27 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 28 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 29 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 30 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 31 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 32 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 33 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 34 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 35 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 36 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 37 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 38 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 39 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 40 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 41 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 42 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 43 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 44 |
+
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 45 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 46 |
+
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 47 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 48 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 49 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 50 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 51 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 52 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 53 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 54 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 55 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 56 |
+
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 57 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 58 |
+
"model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 59 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 60 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 61 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 62 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 63 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 64 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 65 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 66 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 67 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 68 |
+
"model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 69 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 70 |
+
"model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 71 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 72 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 73 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 74 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 75 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 76 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 77 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 78 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 79 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 80 |
+
"model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 81 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 82 |
+
"model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 83 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 84 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 85 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 86 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 87 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 88 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 89 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 90 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 91 |
+
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 92 |
+
"model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 93 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 94 |
+
"model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 95 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 96 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 97 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 98 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 99 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 100 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 101 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 102 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 103 |
+
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 104 |
+
"model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 105 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 106 |
+
"model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 107 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 108 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 109 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 110 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 111 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 112 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 113 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 114 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 115 |
+
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 116 |
+
"model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 117 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 118 |
+
"model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 119 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 120 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 121 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 122 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 123 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 124 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 125 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 126 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 127 |
+
"model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 128 |
+
"model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 129 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 130 |
+
"model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 131 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 132 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 133 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 134 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 135 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 136 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 137 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 138 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 139 |
+
"model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 140 |
+
"model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 141 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 142 |
+
"model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 143 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 144 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 145 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 146 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 147 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 148 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 149 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 150 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 151 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 152 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 153 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 154 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 155 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 156 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 157 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 158 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 159 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 160 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 161 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 162 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 163 |
+
"model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 164 |
+
"model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 165 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 166 |
+
"model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 167 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 168 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 169 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 170 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 171 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 172 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 173 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 174 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 175 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 176 |
+
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 177 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 178 |
+
"model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 179 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 180 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 181 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 182 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 183 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 184 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 185 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 186 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 187 |
+
"model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 188 |
+
"model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 189 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 190 |
+
"model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 191 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 192 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 193 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 194 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 195 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 196 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 197 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 198 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 199 |
+
"model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 200 |
+
"model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 201 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 202 |
+
"model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 203 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 204 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 205 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 206 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 207 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 208 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 209 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 210 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 211 |
+
"model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 212 |
+
"model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 213 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 214 |
+
"model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 215 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 216 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 217 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 218 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 219 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 220 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 221 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 222 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 223 |
+
"model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 224 |
+
"model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 225 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 226 |
+
"model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 227 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 228 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 229 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 230 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 231 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 232 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 233 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 234 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 235 |
+
"model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 236 |
+
"model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 237 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 238 |
+
"model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 239 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 240 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 241 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 242 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 243 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 244 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 245 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 246 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 247 |
+
"model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 248 |
+
"model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 249 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 250 |
+
"model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 251 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 252 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 253 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 254 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 255 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 256 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 257 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 258 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 259 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 260 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 261 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 262 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 263 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 264 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 265 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 266 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 267 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 268 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 269 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 270 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 271 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 272 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 273 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 274 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 275 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 276 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 277 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 278 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 279 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 280 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 281 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 282 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 283 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 284 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 285 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 286 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 287 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 288 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 289 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 290 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 291 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 292 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 293 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 294 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 295 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 296 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 297 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 298 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 299 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 300 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 301 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 302 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 303 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 304 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 305 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 306 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 307 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 308 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 309 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 310 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 311 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 312 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 313 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 314 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 315 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 316 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 317 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 318 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 319 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 320 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 321 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 322 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 323 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 324 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 325 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 326 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 327 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 328 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 329 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 330 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 331 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 332 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 333 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 334 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 335 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 336 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 337 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 338 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 339 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 340 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 341 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 342 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 343 |
+
"model.norm.weight": "model-00002-of-00002.safetensors"
|
| 344 |
+
}
|
| 345 |
+
}
|
src/Qwen-encoder-1.5B/special_tokens_map.json
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_start|>",
|
| 4 |
+
"<|im_end|>"
|
| 5 |
+
],
|
| 6 |
+
"eos_token": {
|
| 7 |
+
"content": "<|im_end|>",
|
| 8 |
+
"lstrip": false,
|
| 9 |
+
"normalized": false,
|
| 10 |
+
"rstrip": false,
|
| 11 |
+
"single_word": false
|
| 12 |
+
},
|
| 13 |
+
"mask_token": "_",
|
| 14 |
+
"pad_token": {
|
| 15 |
+
"content": "<|endoftext|>",
|
| 16 |
+
"lstrip": false,
|
| 17 |
+
"normalized": false,
|
| 18 |
+
"rstrip": false,
|
| 19 |
+
"single_word": false
|
| 20 |
+
}
|
| 21 |
+
}
|
src/Qwen-encoder-1.5B/tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
src/Qwen-encoder-1.5B/tokenizer_config.json
ADDED
|
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_prefix_space": false,
|
| 3 |
+
"added_tokens_decoder": {
|
| 4 |
+
"62": {
|
| 5 |
+
"content": "_",
|
| 6 |
+
"lstrip": false,
|
| 7 |
+
"normalized": false,
|
| 8 |
+
"rstrip": false,
|
| 9 |
+
"single_word": false,
|
| 10 |
+
"special": true
|
| 11 |
+
},
|
| 12 |
+
"151643": {
|
| 13 |
+
"content": "<|endoftext|>",
|
| 14 |
+
"lstrip": false,
|
| 15 |
+
"normalized": false,
|
| 16 |
+
"rstrip": false,
|
| 17 |
+
"single_word": false,
|
| 18 |
+
"special": true
|
| 19 |
+
},
|
| 20 |
+
"151644": {
|
| 21 |
+
"content": "<|im_start|>",
|
| 22 |
+
"lstrip": false,
|
| 23 |
+
"normalized": false,
|
| 24 |
+
"rstrip": false,
|
| 25 |
+
"single_word": false,
|
| 26 |
+
"special": true
|
| 27 |
+
},
|
| 28 |
+
"151645": {
|
| 29 |
+
"content": "<|im_end|>",
|
| 30 |
+
"lstrip": false,
|
| 31 |
+
"normalized": false,
|
| 32 |
+
"rstrip": false,
|
| 33 |
+
"single_word": false,
|
| 34 |
+
"special": true
|
| 35 |
+
}
|
| 36 |
+
},
|
| 37 |
+
"additional_special_tokens": [
|
| 38 |
+
"<|im_start|>",
|
| 39 |
+
"<|im_end|>"
|
| 40 |
+
],
|
| 41 |
+
"bos_token": null,
|
| 42 |
+
"chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
| 43 |
+
"clean_up_tokenization_spaces": false,
|
| 44 |
+
"eos_token": "<|im_end|>",
|
| 45 |
+
"errors": "replace",
|
| 46 |
+
"mask_token": "_",
|
| 47 |
+
"model_max_length": 32768,
|
| 48 |
+
"pad_token": "<|endoftext|>",
|
| 49 |
+
"split_special_tokens": false,
|
| 50 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 51 |
+
"unk_token": null
|
| 52 |
+
}
|
src/Qwen-encoder-1.5B/vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
src/open_clip/__init__.py
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .version import __version__
|
| 2 |
+
|
| 3 |
+
from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
|
| 4 |
+
from .factory import create_model, create_model_and_transforms, create_model_from_pretrained, get_tokenizer, create_loss
|
| 5 |
+
from .factory import list_models, add_model_config, get_model_config, load_checkpoint
|
| 6 |
+
from .model import CLIP, CustomTextCLIP, CLIPTextCfg, CLIPVisionCfg, \
|
| 7 |
+
convert_weights_to_lp, convert_weights_to_fp16, trace_model, get_cast_dtype, get_input_dtype, \
|
| 8 |
+
get_model_tokenize_cfg, get_model_preprocess_cfg, set_model_preprocess_cfg
|
| 9 |
+
from .openai import load_openai_model, list_openai_models
|
| 10 |
+
from .pretrained import list_pretrained, list_pretrained_models_by_tag, list_pretrained_tags_by_model, \
|
| 11 |
+
get_pretrained_url, download_pretrained_from_url, is_pretrained_cfg, get_pretrained_cfg, download_pretrained
|
| 12 |
+
from .tokenizer import SimpleTokenizer, tokenize, decode
|
| 13 |
+
from .transform import image_transform, AugmentationCfg
|
src/open_clip/bpe_simple_vocab_16e6.txt.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:924691ac288e54409236115652ad4aa250f48203de50a9e4722a6ecd48d6804a
|
| 3 |
+
size 1356917
|
src/open_clip/constants.py
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
OPENAI_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073)
|
| 2 |
+
OPENAI_DATASET_STD = (0.26862954, 0.26130258, 0.27577711)
|
| 3 |
+
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
| 4 |
+
IMAGENET_STD = (0.229, 0.224, 0.225)
|
| 5 |
+
INCEPTION_MEAN = (0.5, 0.5, 0.5)
|
| 6 |
+
INCEPTION_STD = (0.5, 0.5, 0.5)
|
src/open_clip/convert.py
ADDED
|
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
""" Conversion functions for 3rd part state-dicts and non-torch native checkpoint formats.
|
| 2 |
+
"""
|
| 3 |
+
from typing import Union
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
import numpy as np
|
| 7 |
+
|
| 8 |
+
from .model import CLIP, CustomTextCLIP
|
| 9 |
+
from .transformer import TextTransformer, Transformer
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
@torch.no_grad()
|
| 13 |
+
def load_big_vision_weights(model: CustomTextCLIP, checkpoint_path: str):
|
| 14 |
+
""" Load weights from .npz checkpoints for official Google big_vision image-text models
|
| 15 |
+
|
| 16 |
+
Currently the SigLIP source models are supported and a CustomTextCLIP destination model
|
| 17 |
+
w/ timm image encoder.
|
| 18 |
+
"""
|
| 19 |
+
from timm.layers import resample_patch_embed, resample_abs_pos_embed
|
| 20 |
+
|
| 21 |
+
def _n2p(w, t=True):
|
| 22 |
+
if w.ndim == 4 and w.shape[0] == w.shape[1] == w.shape[2] == 1:
|
| 23 |
+
w = w.flatten()
|
| 24 |
+
if t:
|
| 25 |
+
if w.ndim == 4:
|
| 26 |
+
w = w.transpose([3, 2, 0, 1])
|
| 27 |
+
elif w.ndim == 3:
|
| 28 |
+
w = w.transpose([2, 0, 1])
|
| 29 |
+
elif w.ndim == 2:
|
| 30 |
+
w = w.transpose([1, 0])
|
| 31 |
+
return torch.from_numpy(w)
|
| 32 |
+
|
| 33 |
+
w = np.load(checkpoint_path)
|
| 34 |
+
interpolation = 'bilinear'
|
| 35 |
+
antialias = False
|
| 36 |
+
|
| 37 |
+
def _convert_timm_img(module, prefix):
|
| 38 |
+
embed_conv_w = _n2p(w[f'{prefix}embedding/kernel'])
|
| 39 |
+
if embed_conv_w.shape[-2:] != module.patch_embed.proj.weight.shape[-2:]:
|
| 40 |
+
embed_conv_w = resample_patch_embed(
|
| 41 |
+
embed_conv_w,
|
| 42 |
+
module.patch_embed.proj.weight.shape[-2:],
|
| 43 |
+
interpolation=interpolation,
|
| 44 |
+
antialias=antialias,
|
| 45 |
+
verbose=True,
|
| 46 |
+
)
|
| 47 |
+
module.patch_embed.proj.weight.copy_(embed_conv_w)
|
| 48 |
+
module.patch_embed.proj.bias.copy_(_n2p(w[f'{prefix}embedding/bias']))
|
| 49 |
+
|
| 50 |
+
if module.cls_token is not None:
|
| 51 |
+
module.cls_token.copy_(_n2p(w[f'{prefix}cls'], t=False))
|
| 52 |
+
|
| 53 |
+
pos_embed_w = _n2p(w[f'{prefix}pos_embedding'], t=False)
|
| 54 |
+
if pos_embed_w.shape != module.pos_embed.shape:
|
| 55 |
+
assert False, f'{pos_embed_w.shape}, {module.pos_embed.shape}'
|
| 56 |
+
num_prefix_tokens = 0 if getattr(module, 'no_embed_class', False) else getattr(module, 'num_prefix_tokens', 1)
|
| 57 |
+
pos_embed_w = resample_abs_pos_embed( # resize pos embedding when different size from pretrained weights
|
| 58 |
+
pos_embed_w,
|
| 59 |
+
new_size=module.patch_embed.grid_size,
|
| 60 |
+
num_prefix_tokens=num_prefix_tokens,
|
| 61 |
+
interpolation=interpolation,
|
| 62 |
+
antialias=antialias,
|
| 63 |
+
verbose=True,
|
| 64 |
+
)
|
| 65 |
+
module.pos_embed.copy_(pos_embed_w)
|
| 66 |
+
|
| 67 |
+
mha_sub, b_sub, ln1_sub = (0, 0, 1)
|
| 68 |
+
for i, block in enumerate(module.blocks.children()):
|
| 69 |
+
block_prefix = f'{prefix}Transformer/encoderblock_{i}/'
|
| 70 |
+
mha_prefix = block_prefix + f'MultiHeadDotProductAttention_{mha_sub}/'
|
| 71 |
+
block.norm1.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/scale']))
|
| 72 |
+
block.norm1.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/bias']))
|
| 73 |
+
block.attn.qkv.weight.copy_(torch.cat([
|
| 74 |
+
_n2p(w[f'{mha_prefix}{n}/kernel'], t=False).flatten(1).T for n in ('query', 'key', 'value')]))
|
| 75 |
+
block.attn.qkv.bias.copy_(torch.cat([
|
| 76 |
+
_n2p(w[f'{mha_prefix}{n}/bias'], t=False).reshape(-1) for n in ('query', 'key', 'value')]))
|
| 77 |
+
block.attn.proj.weight.copy_(_n2p(w[f'{mha_prefix}out/kernel']).flatten(1))
|
| 78 |
+
block.attn.proj.bias.copy_(_n2p(w[f'{mha_prefix}out/bias']))
|
| 79 |
+
for r in range(2):
|
| 80 |
+
getattr(block.mlp, f'fc{r + 1}').weight.copy_(_n2p(w[f'{block_prefix}MlpBlock_{b_sub}/Dense_{r}/kernel']))
|
| 81 |
+
getattr(block.mlp, f'fc{r + 1}').bias.copy_(_n2p(w[f'{block_prefix}MlpBlock_{b_sub}/Dense_{r}/bias']))
|
| 82 |
+
block.norm2.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_{ln1_sub}/scale']))
|
| 83 |
+
block.norm2.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_{ln1_sub}/bias']))
|
| 84 |
+
|
| 85 |
+
module.norm.weight.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/scale']))
|
| 86 |
+
module.norm.bias.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/bias']))
|
| 87 |
+
|
| 88 |
+
if module.attn_pool is not None:
|
| 89 |
+
block_prefix = f'{prefix}MAPHead_0/'
|
| 90 |
+
mha_prefix = block_prefix + f'MultiHeadDotProductAttention_0/'
|
| 91 |
+
module.attn_pool.latent.copy_(_n2p(w[f'{block_prefix}probe'], t=False))
|
| 92 |
+
module.attn_pool.q.weight.copy_(_n2p(w[f'{mha_prefix}query/kernel'], t=False).flatten(1).T)
|
| 93 |
+
module.attn_pool.q.bias.copy_(_n2p(w[f'{mha_prefix}query/bias'], t=False).reshape(-1))
|
| 94 |
+
module.attn_pool.kv.weight.copy_(torch.cat([
|
| 95 |
+
_n2p(w[f'{mha_prefix}{n}/kernel'], t=False).flatten(1).T for n in ('key', 'value')]))
|
| 96 |
+
module.attn_pool.kv.bias.copy_(torch.cat([
|
| 97 |
+
_n2p(w[f'{mha_prefix}{n}/bias'], t=False).reshape(-1) for n in ('key', 'value')]))
|
| 98 |
+
module.attn_pool.proj.weight.copy_(_n2p(w[f'{mha_prefix}out/kernel']).flatten(1))
|
| 99 |
+
module.attn_pool.proj.bias.copy_(_n2p(w[f'{mha_prefix}out/bias']))
|
| 100 |
+
module.attn_pool.norm.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/scale']))
|
| 101 |
+
module.attn_pool.norm.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/bias']))
|
| 102 |
+
for r in range(2):
|
| 103 |
+
getattr(module.attn_pool.mlp, f'fc{r + 1}').weight.copy_(_n2p(w[f'{block_prefix}MlpBlock_0/Dense_{r}/kernel']))
|
| 104 |
+
getattr(module.attn_pool.mlp, f'fc{r + 1}').bias.copy_(_n2p(w[f'{block_prefix}MlpBlock_0/Dense_{r}/bias']))
|
| 105 |
+
|
| 106 |
+
def _convert_openclip_transformer(module: Transformer, prefix):
|
| 107 |
+
for i, block in enumerate(module.resblocks.children()):
|
| 108 |
+
block_prefix = f'{prefix}encoderblock_{i}/'
|
| 109 |
+
mha_prefix = block_prefix + f'MultiHeadDotProductAttention_0/'
|
| 110 |
+
block.ln_1.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/scale']))
|
| 111 |
+
block.ln_1.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/bias']))
|
| 112 |
+
block.attn.in_proj_weight.copy_(torch.cat([
|
| 113 |
+
_n2p(w[f'{mha_prefix}{n}/kernel'], t=False).flatten(1).T for n in ('query', 'key', 'value')]))
|
| 114 |
+
block.attn.in_proj_bias.copy_(torch.cat([
|
| 115 |
+
_n2p(w[f'{mha_prefix}{n}/bias'], t=False).reshape(-1) for n in ('query', 'key', 'value')]))
|
| 116 |
+
block.attn.out_proj.weight.copy_(_n2p(w[f'{mha_prefix}out/kernel']).flatten(1))
|
| 117 |
+
block.attn.out_proj.bias.copy_(_n2p(w[f'{mha_prefix}out/bias']))
|
| 118 |
+
block.ln_2.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_1/scale']))
|
| 119 |
+
block.ln_2.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_1/bias']))
|
| 120 |
+
block.mlp.c_fc.weight.copy_(_n2p(w[f'{block_prefix}MlpBlock_0/Dense_0/kernel']))
|
| 121 |
+
block.mlp.c_fc.bias.copy_(_n2p(w[f'{block_prefix}MlpBlock_0/Dense_0/bias']))
|
| 122 |
+
block.mlp.c_proj.weight.copy_(_n2p(w[f'{block_prefix}MlpBlock_0/Dense_1/kernel']))
|
| 123 |
+
block.mlp.c_proj.bias.copy_(_n2p(w[f'{block_prefix}MlpBlock_0/Dense_1/bias']))
|
| 124 |
+
|
| 125 |
+
def _convert_openclip_txt(module: TextTransformer, prefix):
|
| 126 |
+
module.token_embedding.weight.copy_(_n2p(w[f'{prefix}Embed_0/embedding'], t=False))
|
| 127 |
+
pos_embed_w = _n2p(w[f'{prefix}pos_embedding'], t=False).squeeze(0)
|
| 128 |
+
module.positional_embedding.copy_(pos_embed_w)
|
| 129 |
+
_convert_openclip_transformer(module.transformer, prefix=prefix + 'Encoder_0/')
|
| 130 |
+
module.ln_final.weight.copy_(_n2p(w[f'{prefix}Encoder_0/encoder_norm/scale']))
|
| 131 |
+
module.ln_final.bias.copy_(_n2p(w[f'{prefix}Encoder_0/encoder_norm/bias']))
|
| 132 |
+
module.text_projection.weight.copy_(_n2p(w[f'{prefix}head/kernel']))
|
| 133 |
+
module.text_projection.bias.copy_(_n2p(w[f'{prefix}head/bias']))
|
| 134 |
+
|
| 135 |
+
_convert_timm_img(model.visual.trunk, 'params/img/')
|
| 136 |
+
_convert_openclip_txt(model.text, 'params/txt/')
|
| 137 |
+
model.logit_bias.copy_(_n2p(w['params/b'])[0])
|
| 138 |
+
model.logit_scale.copy_(_n2p(w['params/t'])[0])
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
@torch.no_grad()
|
| 142 |
+
def convert_mobile_clip_state_dict(model: CustomTextCLIP, state_dict, fastvit = True):
|
| 143 |
+
|
| 144 |
+
def _convert_timm_img(state_dict):
|
| 145 |
+
if fastvit:
|
| 146 |
+
from timm.models.fastvit import checkpoint_filter_fn
|
| 147 |
+
else:
|
| 148 |
+
from timm.models.vision_transformer_hybrid import checkpoint_filter_fn
|
| 149 |
+
timm_state_dict = checkpoint_filter_fn(state_dict, model.visual.trunk)
|
| 150 |
+
timm_state_dict = {'visual.trunk.' + k: v for k, v in timm_state_dict.items()}
|
| 151 |
+
return timm_state_dict
|
| 152 |
+
|
| 153 |
+
def _convert_openclip_txt(state_dict, prefix='text_encoder.'):
|
| 154 |
+
text_dict = {}
|
| 155 |
+
for k, v in state_dict.items():
|
| 156 |
+
if not k.startswith(prefix):
|
| 157 |
+
continue
|
| 158 |
+
k = k.replace(prefix, '')
|
| 159 |
+
k = k.replace('projection_layer', 'text_projection')
|
| 160 |
+
k = k.replace('embedding_layer', 'token_embedding')
|
| 161 |
+
if k.startswith('positional_embedding.pos_embed.pos_embed'):
|
| 162 |
+
k = k.replace('positional_embedding.pos_embed.pos_embed', 'positional_embedding')
|
| 163 |
+
v = v.squeeze()
|
| 164 |
+
k = k.replace('final_layer_norm', 'ln_final')
|
| 165 |
+
k = k.replace('pre_norm_mha.0', 'ln_1')
|
| 166 |
+
k = k.replace('pre_norm_mha.1', 'attn')
|
| 167 |
+
k = k.replace('pre_norm_ffn.0', 'ln_2')
|
| 168 |
+
k = k.replace('pre_norm_ffn.1', 'mlp.c_fc')
|
| 169 |
+
k = k.replace('pre_norm_ffn.4', 'mlp.c_proj')
|
| 170 |
+
k = k.replace('qkv_proj.weight', 'in_proj_weight')
|
| 171 |
+
k = k.replace('qkv_proj.bias', 'in_proj_bias')
|
| 172 |
+
k = k.replace('transformer.', 'transformer.resblocks.')
|
| 173 |
+
text_dict['text.' + k] = v
|
| 174 |
+
return text_dict
|
| 175 |
+
|
| 176 |
+
image_dict = _convert_timm_img(state_dict)
|
| 177 |
+
text_dict = _convert_openclip_txt(state_dict)
|
| 178 |
+
out_dict = {**image_dict, **text_dict}
|
| 179 |
+
out_dict['logit_scale'] = state_dict['logit_scale']
|
| 180 |
+
return out_dict
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
def convert_state_dict(model: Union[CustomTextCLIP, CLIP], state_dict):
|
| 184 |
+
if 'image_encoder.model.patch_embed.0.rbr_conv.0.conv.weight' in state_dict:
|
| 185 |
+
# Apple MobileCLIP s1 & s2 state_dicts (s0 and b not currently supported)
|
| 186 |
+
state_dict = convert_mobile_clip_state_dict(model, state_dict)
|
| 187 |
+
if 'image_encoder.model.patch_emb.0.block.conv.weight' in state_dict:
|
| 188 |
+
# convert b model
|
| 189 |
+
state_dict = convert_mobile_clip_state_dict(model, state_dict, fastvit=False)
|
| 190 |
+
return state_dict
|
src/open_clip/factory.py
ADDED
|
@@ -0,0 +1,475 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import logging
|
| 3 |
+
import os
|
| 4 |
+
import re
|
| 5 |
+
from copy import deepcopy
|
| 6 |
+
from dataclasses import asdict
|
| 7 |
+
from pathlib import Path
|
| 8 |
+
from typing import Any, Dict, Optional, Tuple, Union
|
| 9 |
+
|
| 10 |
+
import torch
|
| 11 |
+
|
| 12 |
+
from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
|
| 13 |
+
from .convert import convert_state_dict
|
| 14 |
+
from .model import CLIP, CustomTextCLIP, convert_weights_to_lp, convert_to_custom_text_state_dict,\
|
| 15 |
+
resize_pos_embed, get_cast_dtype, resize_text_pos_embed, set_model_preprocess_cfg
|
| 16 |
+
from .openai import load_openai_model
|
| 17 |
+
from .pretrained import is_pretrained_cfg, get_pretrained_cfg, download_pretrained,\
|
| 18 |
+
list_pretrained_tags_by_model, download_pretrained_from_hf
|
| 19 |
+
from .transform import image_transform_v2, AugmentationCfg, PreprocessCfg, merge_preprocess_dict, merge_preprocess_kwargs
|
| 20 |
+
from .tokenizer import HFTokenizer, SimpleTokenizer, DEFAULT_CONTEXT_LENGTH
|
| 21 |
+
|
| 22 |
+
HF_HUB_PREFIX = 'hf-hub:'
|
| 23 |
+
_MODEL_CONFIG_PATHS = [Path(__file__).parent / f"model_configs/"]
|
| 24 |
+
_MODEL_CONFIGS = {} # directory (model_name: config) of model architecture configs
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def _natural_key(string_):
|
| 28 |
+
return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_.lower())]
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def _rescan_model_configs():
|
| 32 |
+
global _MODEL_CONFIGS
|
| 33 |
+
|
| 34 |
+
config_ext = ('.json',)
|
| 35 |
+
config_files = []
|
| 36 |
+
for config_path in _MODEL_CONFIG_PATHS:
|
| 37 |
+
if config_path.is_file() and config_path.suffix in config_ext:
|
| 38 |
+
config_files.append(config_path)
|
| 39 |
+
elif config_path.is_dir():
|
| 40 |
+
for ext in config_ext:
|
| 41 |
+
config_files.extend(config_path.glob(f'*{ext}'))
|
| 42 |
+
|
| 43 |
+
for cf in config_files:
|
| 44 |
+
with open(cf, 'r') as f:
|
| 45 |
+
model_cfg = json.load(f)
|
| 46 |
+
if all(a in model_cfg for a in ('embed_dim', 'vision_cfg', 'text_cfg')):
|
| 47 |
+
_MODEL_CONFIGS[cf.stem] = model_cfg
|
| 48 |
+
|
| 49 |
+
_MODEL_CONFIGS = {k: v for k, v in sorted(_MODEL_CONFIGS.items(), key=lambda x: _natural_key(x[0]))}
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
_rescan_model_configs() # initial populate of model config registry
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def list_models():
|
| 56 |
+
""" enumerate available model architectures based on config files """
|
| 57 |
+
return list(_MODEL_CONFIGS.keys())
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def add_model_config(path):
|
| 61 |
+
""" add model config path or file and update registry """
|
| 62 |
+
if not isinstance(path, Path):
|
| 63 |
+
path = Path(path)
|
| 64 |
+
_MODEL_CONFIG_PATHS.append(path)
|
| 65 |
+
_rescan_model_configs()
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def get_model_config(model_name):
|
| 69 |
+
if model_name in _MODEL_CONFIGS:
|
| 70 |
+
return deepcopy(_MODEL_CONFIGS[model_name])
|
| 71 |
+
else:
|
| 72 |
+
return None
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def _get_hf_config(model_id, cache_dir=None):
|
| 76 |
+
config_path = download_pretrained_from_hf(model_id, filename='open_clip_config.json', cache_dir=cache_dir)
|
| 77 |
+
with open(config_path, 'r', encoding='utf-8') as f:
|
| 78 |
+
config = json.load(f)
|
| 79 |
+
return config
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def get_tokenizer(
|
| 83 |
+
model_name: str = '',
|
| 84 |
+
context_length: Optional[int] = None,
|
| 85 |
+
**kwargs,
|
| 86 |
+
):
|
| 87 |
+
if model_name.startswith(HF_HUB_PREFIX):
|
| 88 |
+
model_name = model_name[len(HF_HUB_PREFIX):]
|
| 89 |
+
try:
|
| 90 |
+
config = _get_hf_config(model_name)['model_cfg']
|
| 91 |
+
except Exception:
|
| 92 |
+
tokenizer = HFTokenizer(
|
| 93 |
+
model_name,
|
| 94 |
+
context_length=context_length or DEFAULT_CONTEXT_LENGTH,
|
| 95 |
+
**kwargs,
|
| 96 |
+
)
|
| 97 |
+
return tokenizer
|
| 98 |
+
else:
|
| 99 |
+
config = get_model_config(model_name)
|
| 100 |
+
assert config is not None, f"No valid model config found for {model_name}."
|
| 101 |
+
|
| 102 |
+
text_config = config.get('text_cfg', {})
|
| 103 |
+
if 'tokenizer_kwargs' in text_config:
|
| 104 |
+
tokenizer_kwargs = dict(text_config['tokenizer_kwargs'], **kwargs)
|
| 105 |
+
else:
|
| 106 |
+
tokenizer_kwargs = kwargs
|
| 107 |
+
|
| 108 |
+
if context_length is None:
|
| 109 |
+
context_length = text_config.get('context_length', DEFAULT_CONTEXT_LENGTH)
|
| 110 |
+
|
| 111 |
+
if 'hf_tokenizer_name' in text_config:
|
| 112 |
+
tokenizer = HFTokenizer(
|
| 113 |
+
text_config['hf_tokenizer_name'],
|
| 114 |
+
context_length=context_length,
|
| 115 |
+
**tokenizer_kwargs,
|
| 116 |
+
)
|
| 117 |
+
else:
|
| 118 |
+
tokenizer = SimpleTokenizer(
|
| 119 |
+
context_length=context_length,
|
| 120 |
+
**tokenizer_kwargs,
|
| 121 |
+
)
|
| 122 |
+
|
| 123 |
+
return tokenizer
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
def load_state_dict(checkpoint_path: str, map_location='cpu'):
|
| 127 |
+
checkpoint = torch.load(checkpoint_path, map_location=map_location)
|
| 128 |
+
if isinstance(checkpoint, dict) and 'state_dict' in checkpoint:
|
| 129 |
+
state_dict = checkpoint['state_dict']
|
| 130 |
+
elif isinstance(checkpoint, torch.jit.ScriptModule):
|
| 131 |
+
state_dict = checkpoint.state_dict()
|
| 132 |
+
for key in ["input_resolution", "context_length", "vocab_size"]:
|
| 133 |
+
state_dict.pop(key, None)
|
| 134 |
+
else:
|
| 135 |
+
state_dict = checkpoint
|
| 136 |
+
if next(iter(state_dict.items()))[0].startswith('module'):
|
| 137 |
+
state_dict = {k[7:]: v for k, v in state_dict.items()}
|
| 138 |
+
return state_dict
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
def load_checkpoint(
|
| 142 |
+
model: Union[CLIP, CustomTextCLIP],
|
| 143 |
+
checkpoint_path: str,
|
| 144 |
+
strict: bool = True,
|
| 145 |
+
):
|
| 146 |
+
if Path(checkpoint_path).suffix in ('.npz', '.npy'):
|
| 147 |
+
# Separate path loading numpy big_vision (SigLIP) weights
|
| 148 |
+
from open_clip.convert import load_big_vision_weights
|
| 149 |
+
load_big_vision_weights(model, checkpoint_path)
|
| 150 |
+
return {}
|
| 151 |
+
|
| 152 |
+
state_dict = load_state_dict(checkpoint_path)
|
| 153 |
+
|
| 154 |
+
# Detect & convert 3rd party state_dicts -> open_clip
|
| 155 |
+
state_dict = convert_state_dict(model, state_dict)
|
| 156 |
+
|
| 157 |
+
# Detect old format and make compatible with new format
|
| 158 |
+
if 'positional_embedding' in state_dict and not hasattr(model, 'positional_embedding'):
|
| 159 |
+
state_dict = convert_to_custom_text_state_dict(state_dict)
|
| 160 |
+
|
| 161 |
+
# If loading a non-SigLIP model for SigLIP training. See https://github.com/mlfoundations/open_clip/issues/712
|
| 162 |
+
if 'logit_bias' not in state_dict and model.logit_bias is not None:
|
| 163 |
+
state_dict["logit_bias"] = torch.zeros_like(state_dict["logit_scale"])
|
| 164 |
+
|
| 165 |
+
# Certain text transformers no longer expect position_ids after transformers==4.31
|
| 166 |
+
position_id_key = 'text.transformer.embeddings.position_ids'
|
| 167 |
+
if position_id_key in state_dict and not hasattr(model, position_id_key):
|
| 168 |
+
del state_dict[position_id_key]
|
| 169 |
+
|
| 170 |
+
# resize_pos_embed(state_dict, model)
|
| 171 |
+
resize_text_pos_embed(state_dict, model)
|
| 172 |
+
|
| 173 |
+
# Finally, load the massaged state_dict into model
|
| 174 |
+
incompatible_keys = model.load_state_dict(state_dict, strict=strict)
|
| 175 |
+
# incompatible_keys = []
|
| 176 |
+
|
| 177 |
+
return incompatible_keys
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
def create_model(
|
| 181 |
+
model_name: str,
|
| 182 |
+
pretrained: Optional[str] = None,
|
| 183 |
+
precision: str = 'fp32',
|
| 184 |
+
device: Union[str, torch.device] = 'cpu',
|
| 185 |
+
jit: bool = False,
|
| 186 |
+
force_quick_gelu: bool = False,
|
| 187 |
+
force_custom_text: bool = False,
|
| 188 |
+
force_patch_dropout: Optional[float] = None,
|
| 189 |
+
force_image_size: Optional[Union[int, Tuple[int, int]]] = None,
|
| 190 |
+
force_preprocess_cfg: Optional[Dict[str, Any]] = None,
|
| 191 |
+
pretrained_image: bool = False,
|
| 192 |
+
pretrained_hf: bool = True,
|
| 193 |
+
cache_dir: Optional[str] = None,
|
| 194 |
+
output_dict: Optional[bool] = None,
|
| 195 |
+
require_pretrained: bool = False,
|
| 196 |
+
**model_kwargs,
|
| 197 |
+
):
|
| 198 |
+
force_preprocess_cfg = force_preprocess_cfg or {}
|
| 199 |
+
preprocess_cfg = asdict(PreprocessCfg())
|
| 200 |
+
has_hf_hub_prefix = model_name.startswith(HF_HUB_PREFIX)
|
| 201 |
+
if has_hf_hub_prefix:
|
| 202 |
+
model_id = model_name[len(HF_HUB_PREFIX):]
|
| 203 |
+
checkpoint_path = download_pretrained_from_hf(model_id, cache_dir=cache_dir)
|
| 204 |
+
config = _get_hf_config(model_id, cache_dir)
|
| 205 |
+
preprocess_cfg = merge_preprocess_dict(preprocess_cfg, config['preprocess_cfg'])
|
| 206 |
+
model_cfg = config['model_cfg']
|
| 207 |
+
pretrained_hf = False # override, no need to load original HF text weights
|
| 208 |
+
else:
|
| 209 |
+
model_name = model_name.replace('/', '-') # for callers using old naming with / in ViT names
|
| 210 |
+
checkpoint_path = None
|
| 211 |
+
model_cfg = None
|
| 212 |
+
|
| 213 |
+
if isinstance(device, str):
|
| 214 |
+
device = torch.device(device)
|
| 215 |
+
|
| 216 |
+
if pretrained and pretrained.lower() == 'openai':
|
| 217 |
+
logging.info(f'Loading pretrained {model_name} from OpenAI.')
|
| 218 |
+
model = load_openai_model(
|
| 219 |
+
model_name,
|
| 220 |
+
precision=precision,
|
| 221 |
+
device=device,
|
| 222 |
+
cache_dir=cache_dir,
|
| 223 |
+
)
|
| 224 |
+
else:
|
| 225 |
+
model_cfg = model_cfg or get_model_config(model_name)
|
| 226 |
+
if model_cfg is not None:
|
| 227 |
+
logging.info(f'Loaded {model_name} model config.')
|
| 228 |
+
else:
|
| 229 |
+
logging.error(f'Model config for {model_name} not found; available models {list_models()}.')
|
| 230 |
+
raise RuntimeError(f'Model config for {model_name} not found.')
|
| 231 |
+
|
| 232 |
+
if force_quick_gelu:
|
| 233 |
+
# override for use of QuickGELU on non-OpenAI transformer models
|
| 234 |
+
model_cfg["quick_gelu"] = True
|
| 235 |
+
|
| 236 |
+
if force_patch_dropout is not None:
|
| 237 |
+
# override the default patch dropout value
|
| 238 |
+
model_cfg["vision_cfg"]["patch_dropout"] = force_patch_dropout
|
| 239 |
+
|
| 240 |
+
if force_image_size is not None:
|
| 241 |
+
# override model config's image size
|
| 242 |
+
model_cfg["vision_cfg"]["image_size"] = force_image_size
|
| 243 |
+
|
| 244 |
+
is_timm_model = 'timm_model_name' in model_cfg.get('vision_cfg', {})
|
| 245 |
+
if pretrained_image:
|
| 246 |
+
if is_timm_model:
|
| 247 |
+
# pretrained weight loading for timm models set via vision_cfg
|
| 248 |
+
model_cfg['vision_cfg']['timm_model_pretrained'] = True
|
| 249 |
+
else:
|
| 250 |
+
assert False, 'pretrained image towers currently only supported for timm models'
|
| 251 |
+
|
| 252 |
+
# cast_dtype set for fp16 and bf16 (manual mixed-precision), not set for 'amp' or 'pure' modes
|
| 253 |
+
cast_dtype = get_cast_dtype(precision)
|
| 254 |
+
is_hf_model = 'hf_model_name' in model_cfg.get('text_cfg', {})
|
| 255 |
+
if is_hf_model:
|
| 256 |
+
# load pretrained weights for HF text model IFF no CLIP weights being loaded
|
| 257 |
+
model_cfg['text_cfg']['hf_model_pretrained'] = pretrained_hf and not pretrained
|
| 258 |
+
custom_text = model_cfg.pop('custom_text', False) or force_custom_text or is_hf_model
|
| 259 |
+
|
| 260 |
+
model_cfg = dict(model_cfg, **model_kwargs) # merge cfg dict w/ kwargs (kwargs overrides cfg)
|
| 261 |
+
if custom_text:
|
| 262 |
+
if "multimodal_cfg" in model_cfg:
|
| 263 |
+
model = CoCa(**model_cfg, cast_dtype=cast_dtype)
|
| 264 |
+
else:
|
| 265 |
+
model = CustomTextCLIP(**model_cfg, cast_dtype=cast_dtype)
|
| 266 |
+
else:
|
| 267 |
+
model = CLIP(**model_cfg, cast_dtype=cast_dtype)
|
| 268 |
+
|
| 269 |
+
if precision in ("fp16", "bf16"):
|
| 270 |
+
dtype = torch.float16 if 'fp16' in precision else torch.bfloat16
|
| 271 |
+
# manual mixed precision that matches original OpenAI behaviour
|
| 272 |
+
if is_timm_model:
|
| 273 |
+
# FIXME this is a bit janky, create timm based model in low-precision and
|
| 274 |
+
# then cast only LayerNormFp32 instances back to float32 so they don't break.
|
| 275 |
+
# Why? The convert_weights_to_lp fn only works with native models.
|
| 276 |
+
model.to(device=device, dtype=dtype)
|
| 277 |
+
from .transformer import LayerNormFp32
|
| 278 |
+
|
| 279 |
+
def _convert_ln(m):
|
| 280 |
+
if isinstance(m, LayerNormFp32):
|
| 281 |
+
m.weight.data = m.weight.data.to(torch.float32)
|
| 282 |
+
m.bias.data = m.bias.data.to(torch.float32)
|
| 283 |
+
model.apply(_convert_ln)
|
| 284 |
+
else:
|
| 285 |
+
model.to(device=device)
|
| 286 |
+
convert_weights_to_lp(model, dtype=dtype)
|
| 287 |
+
elif precision in ("pure_fp16", "pure_bf16"):
|
| 288 |
+
dtype = torch.float16 if 'fp16' in precision else torch.bfloat16
|
| 289 |
+
model.to(device=device, dtype=dtype)
|
| 290 |
+
else:
|
| 291 |
+
model.to(device=device)
|
| 292 |
+
|
| 293 |
+
pretrained_loaded = False
|
| 294 |
+
if pretrained:
|
| 295 |
+
checkpoint_path = ''
|
| 296 |
+
pretrained_cfg = get_pretrained_cfg(model_name, pretrained)
|
| 297 |
+
if pretrained_cfg:
|
| 298 |
+
checkpoint_path = download_pretrained(pretrained_cfg, cache_dir=cache_dir)
|
| 299 |
+
preprocess_cfg = merge_preprocess_dict(preprocess_cfg, pretrained_cfg)
|
| 300 |
+
elif os.path.exists(pretrained):
|
| 301 |
+
checkpoint_path = pretrained
|
| 302 |
+
|
| 303 |
+
if checkpoint_path:
|
| 304 |
+
logging.info(f'Loading pretrained {model_name} weights ({pretrained}).')
|
| 305 |
+
load_checkpoint(model, checkpoint_path)
|
| 306 |
+
else:
|
| 307 |
+
error_str = (
|
| 308 |
+
f'Pretrained weights ({pretrained}) not found for model {model_name}.'
|
| 309 |
+
f' Available pretrained tags ({list_pretrained_tags_by_model(model_name)}.')
|
| 310 |
+
logging.warning(error_str)
|
| 311 |
+
raise RuntimeError(error_str)
|
| 312 |
+
pretrained_loaded = True
|
| 313 |
+
elif has_hf_hub_prefix:
|
| 314 |
+
logging.info(f'Loading pretrained {model_name} weights ({checkpoint_path}).')
|
| 315 |
+
load_checkpoint(model, checkpoint_path)
|
| 316 |
+
pretrained_loaded = True
|
| 317 |
+
|
| 318 |
+
if require_pretrained and not pretrained_loaded:
|
| 319 |
+
# callers of create_model_from_pretrained always expect pretrained weights
|
| 320 |
+
raise RuntimeError(
|
| 321 |
+
f'Pretrained weights were required for (model: {model_name}, pretrained: {pretrained}) but not loaded.')
|
| 322 |
+
|
| 323 |
+
if output_dict and hasattr(model, "output_dict"):
|
| 324 |
+
model.output_dict = True
|
| 325 |
+
|
| 326 |
+
if jit:
|
| 327 |
+
model = torch.jit.script(model)
|
| 328 |
+
|
| 329 |
+
# set image preprocessing configuration in model attributes for convenience
|
| 330 |
+
if getattr(model.visual, 'image_size', None) is not None:
|
| 331 |
+
# use image_size set on model creation (via config or force_image_size arg)
|
| 332 |
+
force_preprocess_cfg['size'] = model.visual.image_size
|
| 333 |
+
set_model_preprocess_cfg(model, merge_preprocess_dict(preprocess_cfg, force_preprocess_cfg))
|
| 334 |
+
|
| 335 |
+
return model
|
| 336 |
+
|
| 337 |
+
|
| 338 |
+
def create_loss(args):
|
| 339 |
+
if args.distill:
|
| 340 |
+
return DistillClipLoss(
|
| 341 |
+
local_loss=args.local_loss,
|
| 342 |
+
gather_with_grad=args.gather_with_grad,
|
| 343 |
+
cache_labels=True,
|
| 344 |
+
rank=args.rank,
|
| 345 |
+
world_size=args.world_size,
|
| 346 |
+
use_horovod=args.horovod,
|
| 347 |
+
)
|
| 348 |
+
elif "coca" in args.model.lower():
|
| 349 |
+
return CoCaLoss(
|
| 350 |
+
caption_loss_weight=args.coca_caption_loss_weight,
|
| 351 |
+
clip_loss_weight=args.coca_contrastive_loss_weight,
|
| 352 |
+
local_loss=args.local_loss,
|
| 353 |
+
gather_with_grad=args.gather_with_grad,
|
| 354 |
+
cache_labels=True,
|
| 355 |
+
rank=args.rank,
|
| 356 |
+
world_size=args.world_size,
|
| 357 |
+
use_horovod=args.horovod,
|
| 358 |
+
)
|
| 359 |
+
elif args.siglip:
|
| 360 |
+
assert not args.horovod, "Horovod not currently supported for SigLip"
|
| 361 |
+
return SigLipLoss(
|
| 362 |
+
rank=args.rank,
|
| 363 |
+
world_size=args.world_size,
|
| 364 |
+
)
|
| 365 |
+
return ClipLoss(
|
| 366 |
+
local_loss=args.local_loss,
|
| 367 |
+
gather_with_grad=args.gather_with_grad,
|
| 368 |
+
cache_labels=True,
|
| 369 |
+
rank=args.rank,
|
| 370 |
+
world_size=args.world_size,
|
| 371 |
+
use_horovod=args.horovod,
|
| 372 |
+
)
|
| 373 |
+
|
| 374 |
+
|
| 375 |
+
def create_model_and_transforms(
|
| 376 |
+
model_name: str,
|
| 377 |
+
pretrained: Optional[str] = None,
|
| 378 |
+
precision: str = 'fp32',
|
| 379 |
+
device: Union[str, torch.device] = 'cpu',
|
| 380 |
+
jit: bool = False,
|
| 381 |
+
force_quick_gelu: bool = False,
|
| 382 |
+
force_custom_text: bool = False,
|
| 383 |
+
force_patch_dropout: Optional[float] = None,
|
| 384 |
+
force_image_size: Optional[Union[int, Tuple[int, int]]] = None,
|
| 385 |
+
image_mean: Optional[Tuple[float, ...]] = None,
|
| 386 |
+
image_std: Optional[Tuple[float, ...]] = None,
|
| 387 |
+
image_interpolation: Optional[str] = None,
|
| 388 |
+
image_resize_mode: Optional[str] = None, # only effective for inference
|
| 389 |
+
aug_cfg: Optional[Union[Dict[str, Any], AugmentationCfg]] = None,
|
| 390 |
+
pretrained_image: bool = False,
|
| 391 |
+
pretrained_hf: bool = True,
|
| 392 |
+
cache_dir: Optional[str] = None,
|
| 393 |
+
output_dict: Optional[bool] = None,
|
| 394 |
+
**model_kwargs,
|
| 395 |
+
):
|
| 396 |
+
force_preprocess_cfg = merge_preprocess_kwargs(
|
| 397 |
+
{}, mean=image_mean, std=image_std, interpolation=image_interpolation, resize_mode=image_resize_mode)
|
| 398 |
+
|
| 399 |
+
model = create_model(
|
| 400 |
+
model_name,
|
| 401 |
+
pretrained,
|
| 402 |
+
precision=precision,
|
| 403 |
+
device=device,
|
| 404 |
+
jit=jit,
|
| 405 |
+
force_quick_gelu=force_quick_gelu,
|
| 406 |
+
force_custom_text=force_custom_text,
|
| 407 |
+
force_patch_dropout=force_patch_dropout,
|
| 408 |
+
force_image_size=force_image_size,
|
| 409 |
+
force_preprocess_cfg=force_preprocess_cfg,
|
| 410 |
+
pretrained_image=pretrained_image,
|
| 411 |
+
pretrained_hf=pretrained_hf,
|
| 412 |
+
cache_dir=cache_dir,
|
| 413 |
+
output_dict=output_dict,
|
| 414 |
+
**model_kwargs,
|
| 415 |
+
)
|
| 416 |
+
|
| 417 |
+
pp_cfg = PreprocessCfg(**model.visual.preprocess_cfg)
|
| 418 |
+
|
| 419 |
+
preprocess_train = image_transform_v2(
|
| 420 |
+
pp_cfg,
|
| 421 |
+
is_train=True,
|
| 422 |
+
aug_cfg=aug_cfg,
|
| 423 |
+
)
|
| 424 |
+
preprocess_val = image_transform_v2(
|
| 425 |
+
pp_cfg,
|
| 426 |
+
is_train=False,
|
| 427 |
+
)
|
| 428 |
+
|
| 429 |
+
return model, preprocess_train, preprocess_val
|
| 430 |
+
|
| 431 |
+
|
| 432 |
+
def create_model_from_pretrained(
|
| 433 |
+
model_name: str,
|
| 434 |
+
pretrained: Optional[str] = None,
|
| 435 |
+
precision: str = 'fp32',
|
| 436 |
+
device: Union[str, torch.device] = 'cpu',
|
| 437 |
+
jit: bool = False,
|
| 438 |
+
force_quick_gelu: bool = False,
|
| 439 |
+
force_custom_text: bool = False,
|
| 440 |
+
force_image_size: Optional[Union[int, Tuple[int, int]]] = None,
|
| 441 |
+
image_mean: Optional[Tuple[float, ...]] = None,
|
| 442 |
+
image_std: Optional[Tuple[float, ...]] = None,
|
| 443 |
+
image_interpolation: Optional[str] = None,
|
| 444 |
+
image_resize_mode: Optional[str] = None, # only effective for inference
|
| 445 |
+
return_transform: bool = True,
|
| 446 |
+
cache_dir: Optional[str] = None,
|
| 447 |
+
**model_kwargs,
|
| 448 |
+
):
|
| 449 |
+
force_preprocess_cfg = merge_preprocess_kwargs(
|
| 450 |
+
{}, mean=image_mean, std=image_std, interpolation=image_interpolation, resize_mode=image_resize_mode)
|
| 451 |
+
|
| 452 |
+
model = create_model(
|
| 453 |
+
model_name,
|
| 454 |
+
pretrained,
|
| 455 |
+
precision=precision,
|
| 456 |
+
device=device,
|
| 457 |
+
jit=jit,
|
| 458 |
+
force_quick_gelu=force_quick_gelu,
|
| 459 |
+
force_custom_text=force_custom_text,
|
| 460 |
+
force_image_size=force_image_size,
|
| 461 |
+
force_preprocess_cfg=force_preprocess_cfg,
|
| 462 |
+
cache_dir=cache_dir,
|
| 463 |
+
require_pretrained=True,
|
| 464 |
+
**model_kwargs,
|
| 465 |
+
)
|
| 466 |
+
|
| 467 |
+
if not return_transform:
|
| 468 |
+
return model
|
| 469 |
+
|
| 470 |
+
preprocess = image_transform_v2(
|
| 471 |
+
PreprocessCfg(**model.visual.preprocess_cfg),
|
| 472 |
+
is_train=False,
|
| 473 |
+
)
|
| 474 |
+
|
| 475 |
+
return model, preprocess
|
src/open_clip/hf_configs.py
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# HF architecture dict:
|
| 2 |
+
arch_dict = {
|
| 3 |
+
# https://huggingface.co/docs/transformers/model_doc/roberta#roberta
|
| 4 |
+
"roberta": {
|
| 5 |
+
"config_names": {
|
| 6 |
+
"context_length": "max_position_embeddings",
|
| 7 |
+
"vocab_size": "vocab_size",
|
| 8 |
+
"width": "hidden_size",
|
| 9 |
+
"heads": "num_attention_heads",
|
| 10 |
+
"layers": "num_hidden_layers",
|
| 11 |
+
"layer_attr": "layer",
|
| 12 |
+
"token_embeddings_attr": "embeddings"
|
| 13 |
+
},
|
| 14 |
+
"pooler": "mean_pooler",
|
| 15 |
+
},
|
| 16 |
+
# https://huggingface.co/docs/transformers/model_doc/xlm-roberta#transformers.XLMRobertaConfig
|
| 17 |
+
"xlm-roberta": {
|
| 18 |
+
"config_names": {
|
| 19 |
+
"context_length": "max_position_embeddings",
|
| 20 |
+
"vocab_size": "vocab_size",
|
| 21 |
+
"width": "hidden_size",
|
| 22 |
+
"heads": "num_attention_heads",
|
| 23 |
+
"layers": "num_hidden_layers",
|
| 24 |
+
"layer_attr": "layer",
|
| 25 |
+
"token_embeddings_attr": "embeddings"
|
| 26 |
+
},
|
| 27 |
+
"pooler": "mean_pooler",
|
| 28 |
+
},
|
| 29 |
+
# https://huggingface.co/docs/transformers/model_doc/mt5#mt5
|
| 30 |
+
"mt5": {
|
| 31 |
+
"config_names": {
|
| 32 |
+
# unlimited seqlen
|
| 33 |
+
# https://github.com/google-research/text-to-text-transfer-transformer/issues/273
|
| 34 |
+
# https://github.com/huggingface/transformers/blob/v4.24.0/src/transformers/models/t5/modeling_t5.py#L374
|
| 35 |
+
"context_length": "",
|
| 36 |
+
"vocab_size": "vocab_size",
|
| 37 |
+
"width": "d_model",
|
| 38 |
+
"heads": "num_heads",
|
| 39 |
+
"layers": "num_layers",
|
| 40 |
+
"layer_attr": "block",
|
| 41 |
+
"token_embeddings_attr": "embed_tokens"
|
| 42 |
+
},
|
| 43 |
+
"pooler": "mean_pooler",
|
| 44 |
+
},
|
| 45 |
+
# https://huggingface.co/docs/transformers/model_doc/bert
|
| 46 |
+
"bert": {
|
| 47 |
+
"config_names": {
|
| 48 |
+
"context_length": "max_position_embeddings",
|
| 49 |
+
"vocab_size": "vocab_size",
|
| 50 |
+
"width": "hidden_size",
|
| 51 |
+
"heads": "num_attention_heads",
|
| 52 |
+
"layers": "num_hidden_layers",
|
| 53 |
+
},
|
| 54 |
+
"pooler": "cls_pooler",
|
| 55 |
+
},
|
| 56 |
+
# https://huggingface.co/docs/transformers/model_doc/m2m_100
|
| 57 |
+
"m2m_100": {
|
| 58 |
+
"config_names": {
|
| 59 |
+
"context_length": "max_position_embeddings",
|
| 60 |
+
"vocab_size": "vocab_size",
|
| 61 |
+
"width": "d_model",
|
| 62 |
+
"heads": "encoder_attention_heads",
|
| 63 |
+
"layers": "encoder_layers",
|
| 64 |
+
},
|
| 65 |
+
"pooler": "cls_pooler",
|
| 66 |
+
},
|
| 67 |
+
}
|
src/open_clip/hf_model.py
ADDED
|
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
""" huggingface model adapter
|
| 2 |
+
|
| 3 |
+
Wraps HuggingFace transformers (https://github.com/huggingface/transformers) models for use as a text tower in CLIP model.
|
| 4 |
+
"""
|
| 5 |
+
import re
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
import torch.nn as nn
|
| 9 |
+
from torch import TensorType
|
| 10 |
+
|
| 11 |
+
try:
|
| 12 |
+
import transformers
|
| 13 |
+
from transformers import AutoModel, AutoTokenizer, AutoConfig, PretrainedConfig
|
| 14 |
+
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, \
|
| 15 |
+
BaseModelOutputWithPoolingAndCrossAttentions
|
| 16 |
+
except ImportError as e:
|
| 17 |
+
transformers = None
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class BaseModelOutput:
|
| 21 |
+
pass
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class PretrainedConfig:
|
| 25 |
+
pass
|
| 26 |
+
|
| 27 |
+
from .hf_configs import arch_dict
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
# utils
|
| 31 |
+
def _camel2snake(s):
|
| 32 |
+
return re.sub(r'(?<!^)(?=[A-Z])', '_', s).lower()
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
# TODO: ?last - for gpt-like models
|
| 36 |
+
_POOLERS = {}
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def register_pooler(cls):
|
| 40 |
+
"""Decorator registering pooler class"""
|
| 41 |
+
_POOLERS[_camel2snake(cls.__name__)] = cls
|
| 42 |
+
return cls
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
@register_pooler
|
| 46 |
+
class MeanPooler(nn.Module):
|
| 47 |
+
"""Mean pooling"""
|
| 48 |
+
|
| 49 |
+
def forward(self, x: BaseModelOutput, attention_mask: TensorType):
|
| 50 |
+
masked_output = x.last_hidden_state * attention_mask.unsqueeze(-1)
|
| 51 |
+
return masked_output.sum(dim=1) / attention_mask.sum(-1, keepdim=True)
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
@register_pooler
|
| 55 |
+
class MaxPooler(nn.Module):
|
| 56 |
+
"""Max pooling"""
|
| 57 |
+
|
| 58 |
+
def forward(self, x: BaseModelOutput, attention_mask: TensorType):
|
| 59 |
+
masked_output = x.last_hidden_state.masked_fill(attention_mask.unsqueeze(-1), -torch.inf)
|
| 60 |
+
return masked_output.max(1).values
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
@register_pooler
|
| 64 |
+
class ClsPooler(nn.Module):
|
| 65 |
+
"""CLS token pooling"""
|
| 66 |
+
|
| 67 |
+
def __init__(self, use_pooler_output=True):
|
| 68 |
+
super().__init__()
|
| 69 |
+
self.cls_token_position = 0
|
| 70 |
+
self.use_pooler_output = use_pooler_output
|
| 71 |
+
|
| 72 |
+
def forward(self, x: BaseModelOutput, attention_mask: TensorType):
|
| 73 |
+
if (self.use_pooler_output and
|
| 74 |
+
isinstance(x, (BaseModelOutputWithPooling, BaseModelOutputWithPoolingAndCrossAttentions)) and
|
| 75 |
+
(x.pooler_output is not None)
|
| 76 |
+
):
|
| 77 |
+
return x.pooler_output
|
| 78 |
+
|
| 79 |
+
return x.last_hidden_state[:, self.cls_token_position, :]
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
@register_pooler
|
| 83 |
+
class ClsLastHiddenStatePooler(nn.Module):
|
| 84 |
+
"""CLS token pooling
|
| 85 |
+
NOTE: this is equivalent to ClsPooler above with use_pooler_output=False
|
| 86 |
+
"""
|
| 87 |
+
|
| 88 |
+
def __init__(self):
|
| 89 |
+
super().__init__()
|
| 90 |
+
self.cls_token_position = 0
|
| 91 |
+
|
| 92 |
+
def forward(self, x: BaseModelOutput, attention_mask: TensorType):
|
| 93 |
+
return x.last_hidden_state[:, self.cls_token_position, :]
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
class HFTextEncoder(nn.Module):
|
| 97 |
+
"""HuggingFace model adapter"""
|
| 98 |
+
output_tokens: torch.jit.Final[bool]
|
| 99 |
+
|
| 100 |
+
def __init__(
|
| 101 |
+
self,
|
| 102 |
+
model_name_or_path: str,
|
| 103 |
+
output_dim: int,
|
| 104 |
+
config: PretrainedConfig = None,
|
| 105 |
+
pooler_type: str = None,
|
| 106 |
+
proj_type: str = None,
|
| 107 |
+
pretrained: bool = True,
|
| 108 |
+
output_tokens: bool = False,
|
| 109 |
+
):
|
| 110 |
+
super().__init__()
|
| 111 |
+
self.output_tokens = output_tokens
|
| 112 |
+
self.output_dim = output_dim
|
| 113 |
+
|
| 114 |
+
# TODO: find better way to get this information
|
| 115 |
+
uses_transformer_pooler = (pooler_type == "cls_pooler")
|
| 116 |
+
|
| 117 |
+
if transformers is None:
|
| 118 |
+
raise RuntimeError("Please `pip install transformers` to use pre-trained HuggingFace models")
|
| 119 |
+
if config is None:
|
| 120 |
+
self.config = AutoConfig.from_pretrained(model_name_or_path)
|
| 121 |
+
create_func, model_args = (AutoModel.from_pretrained, model_name_or_path) if pretrained else (
|
| 122 |
+
AutoModel.from_config, self.config)
|
| 123 |
+
# TODO: do all model configs have this attribute? PretrainedConfig does so yes??
|
| 124 |
+
if hasattr(self.config, "is_encoder_decoder") and self.config.is_encoder_decoder:
|
| 125 |
+
self.transformer = create_func(model_args)
|
| 126 |
+
self.transformer = self.transformer.encoder
|
| 127 |
+
else:
|
| 128 |
+
self.transformer = create_func(model_args, add_pooling_layer=uses_transformer_pooler)
|
| 129 |
+
else:
|
| 130 |
+
self.config = config
|
| 131 |
+
self.transformer = AutoModel.from_config(config)
|
| 132 |
+
if pooler_type is None: # get default arch pooler
|
| 133 |
+
pooler_type = (arch_dict[self.config.model_type]["pooler"])
|
| 134 |
+
|
| 135 |
+
# FIXME downstream users of OpenCLIP models use these attr, need to verify valid across all models
|
| 136 |
+
self.vocab_size = getattr(self.config, 'vocab_size', 0)
|
| 137 |
+
self.context_length = getattr(self.config, 'max_position_embeddings', 0)
|
| 138 |
+
|
| 139 |
+
self.pooler = _POOLERS[pooler_type]()
|
| 140 |
+
|
| 141 |
+
d_model = getattr(self.config, arch_dict[self.config.model_type]["config_names"]["width"])
|
| 142 |
+
if (d_model == output_dim) and (proj_type is None): # do we always need a proj?
|
| 143 |
+
self.proj = nn.Identity()
|
| 144 |
+
elif proj_type == 'linear':
|
| 145 |
+
self.proj = nn.Linear(d_model, output_dim, bias=False)
|
| 146 |
+
elif proj_type == 'mlp':
|
| 147 |
+
hidden_size = (d_model + output_dim) // 2
|
| 148 |
+
self.proj = nn.Sequential(
|
| 149 |
+
nn.Linear(d_model, hidden_size, bias=False),
|
| 150 |
+
nn.GELU(),
|
| 151 |
+
nn.Linear(hidden_size, output_dim, bias=False),
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
def forward(self, x: TensorType):
|
| 155 |
+
attn_mask = (x != self.config.pad_token_id).long()
|
| 156 |
+
out = self.transformer(input_ids=x, attention_mask=attn_mask)
|
| 157 |
+
pooled_out = self.pooler(out, attn_mask)
|
| 158 |
+
projected = self.proj(pooled_out)
|
| 159 |
+
|
| 160 |
+
seq_len = out.last_hidden_state.shape[1]
|
| 161 |
+
tokens = (
|
| 162 |
+
out.last_hidden_state[:, torch.arange(seq_len) != self.pooler.cls_token_position, :]
|
| 163 |
+
if type(self.pooler) == ClsPooler
|
| 164 |
+
else out.last_hidden_state
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
if self.output_tokens:
|
| 168 |
+
return projected, tokens
|
| 169 |
+
return projected
|
| 170 |
+
|
| 171 |
+
def lock(self, unlocked_layers: int = 0, freeze_layer_norm: bool = True):
|
| 172 |
+
if not unlocked_layers: # full freezing
|
| 173 |
+
for n, p in self.transformer.named_parameters():
|
| 174 |
+
p.requires_grad = (not freeze_layer_norm) if "LayerNorm" in n.split(".") else False
|
| 175 |
+
return
|
| 176 |
+
|
| 177 |
+
encoder = self.transformer.encoder if hasattr(self.transformer, 'encoder') else self.transformer
|
| 178 |
+
layer_list = getattr(encoder, arch_dict[self.config.model_type]["config_names"]["layer_attr"])
|
| 179 |
+
print(f"Unlocking {unlocked_layers}/{len(layer_list) + 1} layers of hf model")
|
| 180 |
+
embeddings = getattr(
|
| 181 |
+
self.transformer, arch_dict[self.config.model_type]["config_names"]["token_embeddings_attr"])
|
| 182 |
+
modules = [embeddings, *layer_list][:-unlocked_layers]
|
| 183 |
+
# freeze layers
|
| 184 |
+
for module in modules:
|
| 185 |
+
for n, p in module.named_parameters():
|
| 186 |
+
p.requires_grad = (not freeze_layer_norm) if "LayerNorm" in n.split(".") else False
|
| 187 |
+
|
| 188 |
+
@torch.jit.ignore
|
| 189 |
+
def set_grad_checkpointing(self, enable=True):
|
| 190 |
+
self.transformer.gradient_checkpointing_enable()
|
| 191 |
+
|
| 192 |
+
def init_parameters(self):
|
| 193 |
+
pass
|
src/open_clip/model.py
ADDED
|
@@ -0,0 +1,782 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
""" CLIP Model
|
| 2 |
+
|
| 3 |
+
Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
|
| 4 |
+
"""
|
| 5 |
+
import copy
|
| 6 |
+
import logging
|
| 7 |
+
import math
|
| 8 |
+
from dataclasses import dataclass
|
| 9 |
+
from typing import Any, Dict, Optional, Tuple, Union
|
| 10 |
+
import timm
|
| 11 |
+
from timm.data import resolve_data_config
|
| 12 |
+
from timm.data.transforms_factory import create_transform
|
| 13 |
+
from timm.layers import SwiGLUPacked
|
| 14 |
+
import numpy as np
|
| 15 |
+
import torch
|
| 16 |
+
import torch.nn.functional as F
|
| 17 |
+
from torch import nn
|
| 18 |
+
from torch.utils.checkpoint import checkpoint
|
| 19 |
+
from functools import partial
|
| 20 |
+
from transformers import AutoTokenizer, AutoModel, AutoConfig
|
| 21 |
+
from llm2vec.models import Qwen2BiModel
|
| 22 |
+
|
| 23 |
+
# from .hf_configs import arch_dict
|
| 24 |
+
from .hf_model import HFTextEncoder
|
| 25 |
+
from .timm_model import TimmModel
|
| 26 |
+
from .transformer import LayerNormFp32, LayerNorm, QuickGELU, Attention, VisionTransformer, TextTransformer,\
|
| 27 |
+
text_global_pool
|
| 28 |
+
from .utils import to_2tuple
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
@dataclass
|
| 32 |
+
class CLIPVisionCfg:
|
| 33 |
+
layers: Union[Tuple[int, int, int, int], int] = 12
|
| 34 |
+
width: int = 768
|
| 35 |
+
head_width: int = 64
|
| 36 |
+
mlp_ratio: float = 4.0
|
| 37 |
+
patch_size: int = 16
|
| 38 |
+
image_size: Union[Tuple[int, int], int] = 224
|
| 39 |
+
|
| 40 |
+
ls_init_value: Optional[float] = None # layer scale initial value
|
| 41 |
+
patch_dropout: float = 0. # what fraction of patches to dropout during training (0 would mean disabled and no patches dropped) - 0.5 to 0.75 recommended in the paper for optimal results
|
| 42 |
+
attentional_pool: bool = False # whether to use attentional pooler in the last embedding layer (overrides pool_type)
|
| 43 |
+
attn_pooler_queries: int = 256 # n_queries for attentional pooler
|
| 44 |
+
attn_pooler_heads: int = 8 # n heads for attentional_pooling
|
| 45 |
+
no_ln_pre: bool = False # disable pre transformer LayerNorm
|
| 46 |
+
pos_embed_type: str = 'learnable'
|
| 47 |
+
final_ln_after_pool: bool = False # apply final LayerNorm after pooling
|
| 48 |
+
pool_type: str = 'tok'
|
| 49 |
+
output_tokens: bool = False
|
| 50 |
+
act_kwargs: Optional[dict] = None
|
| 51 |
+
norm_kwargs: Optional[dict] = None
|
| 52 |
+
|
| 53 |
+
timm_model_name: Optional[str] = None # a valid model name overrides layers, width, patch_size
|
| 54 |
+
timm_model_pretrained: bool = False # use (imagenet) pretrained weights for named model
|
| 55 |
+
timm_pool: str = 'avg' # feature pooling for timm model ('abs_attn', 'rot_attn', 'avg', '')
|
| 56 |
+
timm_proj: str = 'linear' # linear projection for timm model output ('linear', 'mlp', '')
|
| 57 |
+
timm_proj_bias: bool = False # enable bias final projection
|
| 58 |
+
timm_drop: float = 0. # head dropout
|
| 59 |
+
timm_drop_path: Optional[float] = None # backbone stochastic depth
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
@dataclass
|
| 63 |
+
class CLIPTextCfg:
|
| 64 |
+
context_length: int = 77
|
| 65 |
+
vocab_size: int = 49408
|
| 66 |
+
hf_tokenizer_name: Optional[str] = None
|
| 67 |
+
tokenizer_kwargs: Optional[dict] = None
|
| 68 |
+
|
| 69 |
+
width: int = 512
|
| 70 |
+
heads: int = 8
|
| 71 |
+
layers: int = 12
|
| 72 |
+
mlp_ratio: float = 4.0
|
| 73 |
+
ls_init_value: Optional[float] = None # layer scale initial value
|
| 74 |
+
embed_cls: bool = False
|
| 75 |
+
pad_id: int = 0
|
| 76 |
+
no_causal_mask: bool = False # disable causal masking
|
| 77 |
+
final_ln_after_pool: bool = False # apply final LayerNorm after pooling
|
| 78 |
+
pool_type: str = 'argmax'
|
| 79 |
+
proj_bias: bool = False
|
| 80 |
+
output_tokens: bool = False
|
| 81 |
+
act_kwargs: dict = None
|
| 82 |
+
norm_kwargs: dict = None
|
| 83 |
+
|
| 84 |
+
# HuggingFace specific text tower config
|
| 85 |
+
hf_model_name: Optional[str] = None
|
| 86 |
+
hf_model_pretrained: bool = True
|
| 87 |
+
hf_proj_type: str = 'mlp'
|
| 88 |
+
hf_pooler_type: str = 'mean_pooler' # attentional pooling for HF models
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def get_cast_dtype(precision: str):
|
| 92 |
+
cast_dtype = None
|
| 93 |
+
if precision == 'bf16':
|
| 94 |
+
cast_dtype = torch.bfloat16
|
| 95 |
+
elif precision == 'fp16':
|
| 96 |
+
cast_dtype = torch.float16
|
| 97 |
+
return cast_dtype
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def get_input_dtype(precision: str):
|
| 101 |
+
input_dtype = None
|
| 102 |
+
if precision in ('bf16', 'pure_bf16'):
|
| 103 |
+
input_dtype = torch.bfloat16
|
| 104 |
+
elif precision in ('fp16', 'pure_fp16'):
|
| 105 |
+
input_dtype = torch.float16
|
| 106 |
+
return input_dtype
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
def _build_vision_tower(
|
| 110 |
+
embed_dim: int,
|
| 111 |
+
vision_cfg: CLIPVisionCfg,
|
| 112 |
+
quick_gelu: bool = False,
|
| 113 |
+
cast_dtype: Optional[torch.dtype] = None
|
| 114 |
+
):
|
| 115 |
+
if isinstance(vision_cfg, dict):
|
| 116 |
+
vision_cfg = CLIPVisionCfg(**vision_cfg)
|
| 117 |
+
|
| 118 |
+
# OpenAI models are pretrained w/ QuickGELU but native nn.GELU is both faster and more
|
| 119 |
+
# memory efficient in recent PyTorch releases (>= 1.10).
|
| 120 |
+
# NOTE: timm models always use native GELU regardless of quick_gelu flag.
|
| 121 |
+
act_layer = QuickGELU if quick_gelu else nn.GELU
|
| 122 |
+
|
| 123 |
+
if vision_cfg.timm_model_name:
|
| 124 |
+
visual = TimmModel(
|
| 125 |
+
vision_cfg.timm_model_name,
|
| 126 |
+
pretrained=vision_cfg.timm_model_pretrained,
|
| 127 |
+
pool=vision_cfg.timm_pool,
|
| 128 |
+
proj=vision_cfg.timm_proj,
|
| 129 |
+
proj_bias=vision_cfg.timm_proj_bias,
|
| 130 |
+
drop=vision_cfg.timm_drop,
|
| 131 |
+
drop_path=vision_cfg.timm_drop_path,
|
| 132 |
+
patch_drop=vision_cfg.patch_dropout if vision_cfg.patch_dropout > 0 else None,
|
| 133 |
+
embed_dim=embed_dim,
|
| 134 |
+
image_size=vision_cfg.image_size,
|
| 135 |
+
)
|
| 136 |
+
elif isinstance(vision_cfg.layers, (tuple, list)):
|
| 137 |
+
vision_heads = vision_cfg.width * 32 // vision_cfg.head_width
|
| 138 |
+
visual = ModifiedResNet(
|
| 139 |
+
layers=vision_cfg.layers,
|
| 140 |
+
output_dim=embed_dim,
|
| 141 |
+
heads=vision_heads,
|
| 142 |
+
image_size=vision_cfg.image_size,
|
| 143 |
+
width=vision_cfg.width,
|
| 144 |
+
)
|
| 145 |
+
else:
|
| 146 |
+
vision_heads = vision_cfg.width // vision_cfg.head_width
|
| 147 |
+
norm_layer = LayerNormFp32 if cast_dtype in (torch.float16, torch.bfloat16) else LayerNorm
|
| 148 |
+
if vision_cfg.norm_kwargs:
|
| 149 |
+
norm_layer = partial(norm_layer, **vision_cfg.norm_kwargs)
|
| 150 |
+
if vision_cfg.act_kwargs is not None:
|
| 151 |
+
act_layer = partial(act_layer, **vision_cfg.act_kwargs)
|
| 152 |
+
|
| 153 |
+
visual = VisionTransformer(
|
| 154 |
+
image_size=vision_cfg.image_size,
|
| 155 |
+
patch_size=vision_cfg.patch_size,
|
| 156 |
+
width=vision_cfg.width,
|
| 157 |
+
layers=vision_cfg.layers,
|
| 158 |
+
heads=vision_heads,
|
| 159 |
+
mlp_ratio=vision_cfg.mlp_ratio,
|
| 160 |
+
ls_init_value=vision_cfg.ls_init_value,
|
| 161 |
+
patch_dropout=vision_cfg.patch_dropout,
|
| 162 |
+
attentional_pool=vision_cfg.attentional_pool,
|
| 163 |
+
attn_pooler_queries=vision_cfg.attn_pooler_queries,
|
| 164 |
+
attn_pooler_heads=vision_cfg.attn_pooler_heads,
|
| 165 |
+
pos_embed_type=vision_cfg.pos_embed_type,
|
| 166 |
+
no_ln_pre=vision_cfg.no_ln_pre,
|
| 167 |
+
final_ln_after_pool=vision_cfg.final_ln_after_pool,
|
| 168 |
+
pool_type=vision_cfg.pool_type,
|
| 169 |
+
output_tokens=vision_cfg.output_tokens,
|
| 170 |
+
output_dim=embed_dim,
|
| 171 |
+
act_layer=act_layer,
|
| 172 |
+
norm_layer=norm_layer,
|
| 173 |
+
)
|
| 174 |
+
|
| 175 |
+
return visual
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
def _build_text_tower(
|
| 179 |
+
embed_dim: int,
|
| 180 |
+
text_cfg: CLIPTextCfg,
|
| 181 |
+
quick_gelu: bool = False,
|
| 182 |
+
cast_dtype: Optional[torch.dtype] = None,
|
| 183 |
+
):
|
| 184 |
+
if isinstance(text_cfg, dict):
|
| 185 |
+
text_cfg = CLIPTextCfg(**text_cfg)
|
| 186 |
+
|
| 187 |
+
if text_cfg.hf_model_name:
|
| 188 |
+
text = HFTextEncoder(
|
| 189 |
+
text_cfg.hf_model_name,
|
| 190 |
+
output_dim=embed_dim,
|
| 191 |
+
proj_type=text_cfg.hf_proj_type,
|
| 192 |
+
pooler_type=text_cfg.hf_pooler_type,
|
| 193 |
+
pretrained=text_cfg.hf_model_pretrained,
|
| 194 |
+
output_tokens=text_cfg.output_tokens,
|
| 195 |
+
)
|
| 196 |
+
else:
|
| 197 |
+
act_layer = QuickGELU if quick_gelu else nn.GELU
|
| 198 |
+
norm_layer = LayerNormFp32 if cast_dtype in (torch.float16, torch.bfloat16) else LayerNorm
|
| 199 |
+
if text_cfg.norm_kwargs:
|
| 200 |
+
norm_layer = partial(norm_layer, **text_cfg.norm_kwargs)
|
| 201 |
+
if text_cfg.act_kwargs is not None:
|
| 202 |
+
act_layer = partial(act_layer, **text_cfg.act_kwargs)
|
| 203 |
+
|
| 204 |
+
text = TextTransformer(
|
| 205 |
+
context_length=text_cfg.context_length,
|
| 206 |
+
vocab_size=text_cfg.vocab_size,
|
| 207 |
+
width=text_cfg.width,
|
| 208 |
+
heads=text_cfg.heads,
|
| 209 |
+
layers=text_cfg.layers,
|
| 210 |
+
mlp_ratio=text_cfg.mlp_ratio,
|
| 211 |
+
ls_init_value=text_cfg.ls_init_value,
|
| 212 |
+
output_dim=embed_dim,
|
| 213 |
+
embed_cls=text_cfg.embed_cls,
|
| 214 |
+
no_causal_mask=text_cfg.no_causal_mask,
|
| 215 |
+
pad_id=text_cfg.pad_id,
|
| 216 |
+
pool_type=text_cfg.pool_type,
|
| 217 |
+
proj_bias=text_cfg.proj_bias,
|
| 218 |
+
output_tokens=text_cfg.output_tokens,
|
| 219 |
+
act_layer=act_layer,
|
| 220 |
+
norm_layer=norm_layer,
|
| 221 |
+
)
|
| 222 |
+
return text
|
| 223 |
+
|
| 224 |
+
def resize_pos_embed(state_dict, interpolation: str = 'bicubic', antialias: bool = True):
|
| 225 |
+
# Rescale the grid of position embeddings when loading from state_dict
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
old_pos_embed = state_dict.get('pos_embed', None)[0]
|
| 229 |
+
if old_pos_embed is None:
|
| 230 |
+
print('No positional embedding found in state_dict')
|
| 231 |
+
return
|
| 232 |
+
grid_size = to_2tuple([336 // 14, 336 // 14])
|
| 233 |
+
extra_tokens = 5 # FIXME detect different token configs (ie no class token, or more)
|
| 234 |
+
new_seq_len = grid_size[0] * grid_size[1] + extra_tokens
|
| 235 |
+
if new_seq_len == old_pos_embed.shape[0]:
|
| 236 |
+
print('Positional embedding grid-size matches model, no need to resize')
|
| 237 |
+
return
|
| 238 |
+
|
| 239 |
+
if extra_tokens:
|
| 240 |
+
pos_emb_tok, pos_emb_img = old_pos_embed[:extra_tokens], old_pos_embed[extra_tokens:]
|
| 241 |
+
else:
|
| 242 |
+
pos_emb_tok, pos_emb_img = None, old_pos_embed
|
| 243 |
+
|
| 244 |
+
old_grid_size = to_2tuple(int(math.sqrt(len(pos_emb_img))))
|
| 245 |
+
|
| 246 |
+
print('Resizing position embedding grid-size from %s to %s', old_grid_size, grid_size)
|
| 247 |
+
pos_emb_img = pos_emb_img.reshape(1, old_grid_size[0], old_grid_size[1], -1).permute(0, 3, 1, 2)
|
| 248 |
+
pos_emb_img = F.interpolate(
|
| 249 |
+
pos_emb_img,
|
| 250 |
+
size=grid_size,
|
| 251 |
+
mode=interpolation,
|
| 252 |
+
antialias=antialias,
|
| 253 |
+
align_corners=False,
|
| 254 |
+
)
|
| 255 |
+
pos_emb_img = pos_emb_img.permute(0, 2, 3, 1).reshape(1, grid_size[0] * grid_size[1], -1)
|
| 256 |
+
if pos_emb_tok is not None:
|
| 257 |
+
# import pdb
|
| 258 |
+
# pdb.set_trace()
|
| 259 |
+
new_pos_embed = torch.cat([pos_emb_tok.unsqueeze(0), pos_emb_img], dim=1)
|
| 260 |
+
else:
|
| 261 |
+
new_pos_embed = pos_emb_img
|
| 262 |
+
state_dict['pos_embed'] = new_pos_embed
|
| 263 |
+
return state_dict
|
| 264 |
+
|
| 265 |
+
class CLIP(nn.Module):
|
| 266 |
+
output_dict: torch.jit.Final[bool]
|
| 267 |
+
|
| 268 |
+
def __init__(
|
| 269 |
+
self,
|
| 270 |
+
embed_dim: int,
|
| 271 |
+
vision_cfg: CLIPVisionCfg,
|
| 272 |
+
text_cfg: CLIPTextCfg,
|
| 273 |
+
quick_gelu: bool = False,
|
| 274 |
+
init_logit_scale: float = np.log(1 / 0.07),
|
| 275 |
+
init_logit_bias: Optional[float] = None,
|
| 276 |
+
cast_dtype: Optional[torch.dtype] = None,
|
| 277 |
+
output_dict: bool = False,
|
| 278 |
+
):
|
| 279 |
+
super().__init__()
|
| 280 |
+
self.output_dict = output_dict
|
| 281 |
+
self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype)
|
| 282 |
+
model = timm.create_model("hf-hub:paige-ai/Virchow2", pretrained=False, mlp_layer=SwiGLUPacked, patch_size=14, img_size=336, # 将 patch_size 修改为 21
|
| 283 |
+
act_layer=torch.nn.SiLU)
|
| 284 |
+
self.visual2 = model
|
| 285 |
+
|
| 286 |
+
config = AutoConfig.from_pretrained("../Qwen-encoder-1.5B")
|
| 287 |
+
|
| 288 |
+
# 初始化模型结构(不加载预训练参数)
|
| 289 |
+
self.text = Qwen2BiModel(config)
|
| 290 |
+
self.proj = nn.Linear(1536, 3328) # 2048+1280
|
| 291 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * init_logit_scale)
|
| 292 |
+
if init_logit_bias is not None:
|
| 293 |
+
self.logit_bias = nn.Parameter(torch.ones([]) * init_logit_bias)
|
| 294 |
+
else:
|
| 295 |
+
self.logit_bias = None
|
| 296 |
+
|
| 297 |
+
def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False):
|
| 298 |
+
# lock image tower as per LiT - https://arxiv.org/abs/2111.07991
|
| 299 |
+
self.visual.lock(unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats)
|
| 300 |
+
|
| 301 |
+
def lock_text_tower(self, unlocked_layers: int = 0, freeze_layer_norm: bool = True):
|
| 302 |
+
|
| 303 |
+
if not unlocked_layers: # full freezing
|
| 304 |
+
for n, p in self.transformer.named_parameters():
|
| 305 |
+
p.requires_grad = (not freeze_layer_norm) if "LayerNorm" in n.split(".") else False
|
| 306 |
+
return
|
| 307 |
+
|
| 308 |
+
encoder = self.transformer.encoder if hasattr(self.transformer, 'encoder') else self.transformer
|
| 309 |
+
layer_list = getattr(encoder, arch_dict[self.config.model_type]["config_names"]["layer_attr"])
|
| 310 |
+
print(f"Unlocking {unlocked_layers}/{len(layer_list) + 1} layers of hf model")
|
| 311 |
+
embeddings = getattr(
|
| 312 |
+
self.transformer, arch_dict[self.config.model_type]["config_names"]["token_embeddings_attr"])
|
| 313 |
+
modules = [embeddings, *layer_list][:-unlocked_layers]
|
| 314 |
+
# freeze layers
|
| 315 |
+
for module in modules:
|
| 316 |
+
for n, p in module.named_parameters():
|
| 317 |
+
p.requires_grad = (not freeze_layer_norm) if "LayerNorm" in n.split(".") else False
|
| 318 |
+
|
| 319 |
+
## lock position embedding
|
| 320 |
+
self.positional_embedding.requires_grad = False
|
| 321 |
+
## lock token embedding
|
| 322 |
+
self.token_embedding.requires_grad = False
|
| 323 |
+
## lock text projection
|
| 324 |
+
if self.text_projection is not None:
|
| 325 |
+
self.text_projection.requires_grad = False
|
| 326 |
+
@torch.jit.ignore
|
| 327 |
+
def set_grad_checkpointing(self, enable=True):
|
| 328 |
+
self.visual.set_grad_checkpointing(enable)
|
| 329 |
+
self.visual2.set_grad_checkpointing(enable)
|
| 330 |
+
# self.transformer.grad_checkpointing = enable
|
| 331 |
+
self.text._set_gradient_checkpointing(enable)
|
| 332 |
+
|
| 333 |
+
def encode_image(self, image, normalize: bool = False):
|
| 334 |
+
features = self.visual(image)
|
| 335 |
+
features2 = self.visual2(image)
|
| 336 |
+
features2 = torch.cat([features2[:, 0, :], features2[:, 5:, :].mean(1)], dim=-1)
|
| 337 |
+
features = torch.cat([features, features2], dim=-1)
|
| 338 |
+
return F.normalize(features, dim=-1) if normalize else features
|
| 339 |
+
|
| 340 |
+
def encode_text(self, text2, normalize: bool = False):
|
| 341 |
+
features = self.text(**text2)
|
| 342 |
+
### mask attention
|
| 343 |
+
last_hidden_states = features.last_hidden_state # (batch_size, sequence_length, hidden_size)
|
| 344 |
+
attention_mask = text2['attention_mask'] # (batch_size, sequence_length)
|
| 345 |
+
# (batch_size, sequence_length, 1)
|
| 346 |
+
attention_mask = attention_mask.unsqueeze(-1).float()
|
| 347 |
+
masked_hidden_states = last_hidden_states * attention_mask
|
| 348 |
+
# (batch_size, 1, 1)
|
| 349 |
+
valid_token_count = attention_mask.sum(dim=1, keepdim=True)
|
| 350 |
+
# (batch_size, hidden_size)
|
| 351 |
+
features = masked_hidden_states.sum(dim=1) / valid_token_count.squeeze(1)
|
| 352 |
+
features = self.proj(features)
|
| 353 |
+
return F.normalize(features, dim=-1) if normalize else features
|
| 354 |
+
|
| 355 |
+
def get_logits(self, image, text):
|
| 356 |
+
image_features = self.encode_image(image, normalize=True)
|
| 357 |
+
text_features = self.encode_text(text, normalize=True)
|
| 358 |
+
image_logits = self.logit_scale.exp() * image_features @ text_features.T
|
| 359 |
+
if self.logit_bias is not None:
|
| 360 |
+
image_logits += self.logit_bias
|
| 361 |
+
text_logits = image_logits.T
|
| 362 |
+
return image_logits, text_logits
|
| 363 |
+
|
| 364 |
+
def forward(
|
| 365 |
+
self,
|
| 366 |
+
image: Optional[torch.Tensor] = None,
|
| 367 |
+
text: Optional[torch.Tensor] = None,
|
| 368 |
+
):
|
| 369 |
+
image_features = self.encode_image(image, normalize=True) if image is not None else None
|
| 370 |
+
text_features = self.encode_text(text, normalize=True) if text is not None else None
|
| 371 |
+
|
| 372 |
+
if self.output_dict:
|
| 373 |
+
out_dict = {
|
| 374 |
+
"image_features": image_features,
|
| 375 |
+
"text_features": text_features,
|
| 376 |
+
"logit_scale": self.logit_scale.exp()
|
| 377 |
+
}
|
| 378 |
+
if self.logit_bias is not None:
|
| 379 |
+
out_dict['logit_bias'] = self.logit_bias
|
| 380 |
+
return out_dict
|
| 381 |
+
|
| 382 |
+
if self.logit_bias is not None:
|
| 383 |
+
return image_features, text_features, self.logit_scale.exp(), self.logit_bias
|
| 384 |
+
return image_features, text_features, self.logit_scale.exp()
|
| 385 |
+
|
| 386 |
+
|
| 387 |
+
class CustomTextCLIP(nn.Module):
|
| 388 |
+
output_dict: torch.jit.Final[bool]
|
| 389 |
+
|
| 390 |
+
def __init__(
|
| 391 |
+
self,
|
| 392 |
+
embed_dim: int,
|
| 393 |
+
vision_cfg: CLIPVisionCfg,
|
| 394 |
+
text_cfg: CLIPTextCfg,
|
| 395 |
+
quick_gelu: bool = False,
|
| 396 |
+
init_logit_scale: float = np.log(1 / 0.07),
|
| 397 |
+
init_logit_bias: Optional[float] = None,
|
| 398 |
+
cast_dtype: Optional[torch.dtype] = None,
|
| 399 |
+
output_dict: bool = False,
|
| 400 |
+
):
|
| 401 |
+
super().__init__()
|
| 402 |
+
self.output_dict = output_dict
|
| 403 |
+
self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype)
|
| 404 |
+
self.text = _build_text_tower(embed_dim, text_cfg, quick_gelu, cast_dtype)
|
| 405 |
+
self.context_length = self.text.context_length
|
| 406 |
+
self.vocab_size = self.text.vocab_size
|
| 407 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * init_logit_scale)
|
| 408 |
+
if init_logit_bias is not None:
|
| 409 |
+
self.logit_bias = nn.Parameter(torch.ones([]) * init_logit_bias)
|
| 410 |
+
else:
|
| 411 |
+
self.logit_bias = None
|
| 412 |
+
|
| 413 |
+
def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False):
|
| 414 |
+
# lock image tower as per LiT - https://arxiv.org/abs/2111.07991
|
| 415 |
+
self.visual.lock(unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats)
|
| 416 |
+
|
| 417 |
+
def lock_text_tower(self, unlocked_layers: int = 0, freeze_layer_norm: bool = True):
|
| 418 |
+
self.text.lock(unlocked_layers, freeze_layer_norm)
|
| 419 |
+
|
| 420 |
+
@torch.jit.ignore
|
| 421 |
+
def set_grad_checkpointing(self, enable=True):
|
| 422 |
+
self.visual.set_grad_checkpointing(enable)
|
| 423 |
+
self.text.set_grad_checkpointing(enable)
|
| 424 |
+
|
| 425 |
+
def encode_image(self, image, normalize: bool = False):
|
| 426 |
+
features = self.visual(image)
|
| 427 |
+
return F.normalize(features, dim=-1) if normalize else features
|
| 428 |
+
|
| 429 |
+
def encode_text(self, text, normalize: bool = False):
|
| 430 |
+
features = self.text(text)
|
| 431 |
+
return F.normalize(features, dim=-1) if normalize else features
|
| 432 |
+
|
| 433 |
+
def get_logits(self, image, text):
|
| 434 |
+
image_features = self.encode_image(image, normalize=True)
|
| 435 |
+
text_features = self.encode_text(text, normalize=True)
|
| 436 |
+
image_logits = self.logit_scale.exp() * image_features @ text_features.T
|
| 437 |
+
if self.logit_bias is not None:
|
| 438 |
+
image_logits += self.logit_bias
|
| 439 |
+
text_logits = image_logits.T
|
| 440 |
+
return image_logits, text_logits
|
| 441 |
+
|
| 442 |
+
def forward(
|
| 443 |
+
self,
|
| 444 |
+
image: Optional[torch.Tensor] = None,
|
| 445 |
+
text: Optional[torch.Tensor] = None,
|
| 446 |
+
):
|
| 447 |
+
image_features = self.encode_image(image, normalize=True) if image is not None else None
|
| 448 |
+
text_features = self.encode_text(text, normalize=True) if text is not None else None
|
| 449 |
+
|
| 450 |
+
if self.output_dict:
|
| 451 |
+
out_dict = {
|
| 452 |
+
"image_features": image_features,
|
| 453 |
+
"text_features": text_features,
|
| 454 |
+
"logit_scale": self.logit_scale.exp()
|
| 455 |
+
}
|
| 456 |
+
if self.logit_bias is not None:
|
| 457 |
+
out_dict['logit_bias'] = self.logit_bias
|
| 458 |
+
return out_dict
|
| 459 |
+
|
| 460 |
+
if self.logit_bias is not None:
|
| 461 |
+
return image_features, text_features, self.logit_scale.exp(), self.logit_bias
|
| 462 |
+
return image_features, text_features, self.logit_scale.exp()
|
| 463 |
+
|
| 464 |
+
|
| 465 |
+
|
| 466 |
+
|
| 467 |
+
|
| 468 |
+
class CustomCLIP(nn.Module):
|
| 469 |
+
output_dict: torch.jit.Final[bool]
|
| 470 |
+
|
| 471 |
+
def __init__(
|
| 472 |
+
self,
|
| 473 |
+
embed_dim: int,
|
| 474 |
+
vision_cfg: CLIPVisionCfg,
|
| 475 |
+
text_cfg: CLIPTextCfg,
|
| 476 |
+
quick_gelu: bool = False,
|
| 477 |
+
init_logit_scale: float = np.log(1 / 0.07),
|
| 478 |
+
init_logit_bias: Optional[float] = None,
|
| 479 |
+
cast_dtype: Optional[torch.dtype] = None,
|
| 480 |
+
output_dict: bool = False,
|
| 481 |
+
):
|
| 482 |
+
super().__init__()
|
| 483 |
+
self.output_dict = output_dict
|
| 484 |
+
model = timm.create_model('hf_hub:paige-ai/Virchow2', pretrained=False)
|
| 485 |
+
|
| 486 |
+
# 加载本地保存的模型权重
|
| 487 |
+
checkpoint_path = "/sunyuxuan/project/2024/model/vision_encoder/pathology/virchow2/pytorch_model.bin"
|
| 488 |
+
state_dict = torch.load(checkpoint_path, map_location="cpu")
|
| 489 |
+
model.load_state_dict(state_dict)
|
| 490 |
+
# import pdb
|
| 491 |
+
# pdb.set_trace()
|
| 492 |
+
|
| 493 |
+
|
| 494 |
+
self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype)
|
| 495 |
+
self.text = _build_text_tower(embed_dim, text_cfg, quick_gelu, cast_dtype)
|
| 496 |
+
self.context_length = self.text.context_length
|
| 497 |
+
self.vocab_size = self.text.vocab_size
|
| 498 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * init_logit_scale)
|
| 499 |
+
if init_logit_bias is not None:
|
| 500 |
+
self.logit_bias = nn.Parameter(torch.ones([]) * init_logit_bias)
|
| 501 |
+
else:
|
| 502 |
+
self.logit_bias = None
|
| 503 |
+
|
| 504 |
+
def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False):
|
| 505 |
+
# lock image tower as per LiT - https://arxiv.org/abs/2111.07991
|
| 506 |
+
self.visual.lock(unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats)
|
| 507 |
+
|
| 508 |
+
def lock_text_tower(self, unlocked_layers: int = 0, freeze_layer_norm: bool = True):
|
| 509 |
+
self.text.lock(unlocked_layers, freeze_layer_norm)
|
| 510 |
+
|
| 511 |
+
@torch.jit.ignore
|
| 512 |
+
def set_grad_checkpointing(self, enable=True):
|
| 513 |
+
self.visual.set_grad_checkpointing(enable)
|
| 514 |
+
self.text.set_grad_checkpointing(enable)
|
| 515 |
+
|
| 516 |
+
def encode_image(self, image, normalize: bool = False):
|
| 517 |
+
features = self.visual(image)
|
| 518 |
+
return F.normalize(features, dim=-1) if normalize else features
|
| 519 |
+
|
| 520 |
+
def encode_text(self, text, normalize: bool = False):
|
| 521 |
+
features = self.text(text)
|
| 522 |
+
return F.normalize(features, dim=-1) if normalize else features
|
| 523 |
+
|
| 524 |
+
def get_logits(self, image, text):
|
| 525 |
+
image_features = self.encode_image(image, normalize=True)
|
| 526 |
+
text_features = self.encode_text(text, normalize=True)
|
| 527 |
+
image_logits = self.logit_scale.exp() * image_features @ text_features.T
|
| 528 |
+
if self.logit_bias is not None:
|
| 529 |
+
image_logits += self.logit_bias
|
| 530 |
+
text_logits = image_logits.T
|
| 531 |
+
return image_logits, text_logits
|
| 532 |
+
|
| 533 |
+
def forward(
|
| 534 |
+
self,
|
| 535 |
+
image: Optional[torch.Tensor] = None,
|
| 536 |
+
text: Optional[torch.Tensor] = None,
|
| 537 |
+
):
|
| 538 |
+
image_features = self.encode_image(image, normalize=True) if image is not None else None
|
| 539 |
+
text_features = self.encode_text(text, normalize=True) if text is not None else None
|
| 540 |
+
|
| 541 |
+
if self.output_dict:
|
| 542 |
+
out_dict = {
|
| 543 |
+
"image_features": image_features,
|
| 544 |
+
"text_features": text_features,
|
| 545 |
+
"logit_scale": self.logit_scale.exp()
|
| 546 |
+
}
|
| 547 |
+
if self.logit_bias is not None:
|
| 548 |
+
out_dict['logit_bias'] = self.logit_bias
|
| 549 |
+
return out_dict
|
| 550 |
+
|
| 551 |
+
if self.logit_bias is not None:
|
| 552 |
+
return image_features, text_features, self.logit_scale.exp(), self.logit_bias
|
| 553 |
+
return image_features, text_features, self.logit_scale.exp()
|
| 554 |
+
|
| 555 |
+
|
| 556 |
+
def convert_weights_to_lp(model: nn.Module, dtype=torch.float16):
|
| 557 |
+
"""Convert applicable model parameters to low-precision (bf16 or fp16)"""
|
| 558 |
+
|
| 559 |
+
def _convert_weights(l):
|
| 560 |
+
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
|
| 561 |
+
l.weight.data = l.weight.data.to(dtype)
|
| 562 |
+
if l.bias is not None:
|
| 563 |
+
l.bias.data = l.bias.data.to(dtype)
|
| 564 |
+
|
| 565 |
+
if isinstance(l, (nn.MultiheadAttention, Attention)):
|
| 566 |
+
for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
|
| 567 |
+
tensor = getattr(l, attr)
|
| 568 |
+
if tensor is not None:
|
| 569 |
+
tensor.data = tensor.data.to(dtype)
|
| 570 |
+
|
| 571 |
+
if isinstance(l, (CLIP, TextTransformer)):
|
| 572 |
+
# convert text nn.Parameter projections
|
| 573 |
+
attr = getattr(l, "text_projection", None)
|
| 574 |
+
if attr is not None:
|
| 575 |
+
attr.data = attr.data.to(dtype)
|
| 576 |
+
|
| 577 |
+
if isinstance(l, VisionTransformer):
|
| 578 |
+
# convert vision nn.Parameter projections
|
| 579 |
+
attr = getattr(l, "proj", None)
|
| 580 |
+
if attr is not None:
|
| 581 |
+
attr.data = attr.data.to(dtype)
|
| 582 |
+
|
| 583 |
+
model.apply(_convert_weights)
|
| 584 |
+
|
| 585 |
+
|
| 586 |
+
convert_weights_to_fp16 = convert_weights_to_lp # backwards compat
|
| 587 |
+
|
| 588 |
+
|
| 589 |
+
# used to maintain checkpoint compatibility
|
| 590 |
+
def convert_to_custom_text_state_dict(state_dict: dict):
|
| 591 |
+
if 'text_projection' in state_dict:
|
| 592 |
+
# old format state_dict, move text tower -> .text
|
| 593 |
+
new_state_dict = {}
|
| 594 |
+
for k, v in state_dict.items():
|
| 595 |
+
if any(k.startswith(p) for p in (
|
| 596 |
+
'text_projection',
|
| 597 |
+
'positional_embedding',
|
| 598 |
+
'token_embedding',
|
| 599 |
+
'transformer',
|
| 600 |
+
'ln_final',
|
| 601 |
+
)):
|
| 602 |
+
k = 'text.' + k
|
| 603 |
+
new_state_dict[k] = v
|
| 604 |
+
return new_state_dict
|
| 605 |
+
return state_dict
|
| 606 |
+
|
| 607 |
+
|
| 608 |
+
def build_model_from_openai_state_dict(
|
| 609 |
+
state_dict: dict,
|
| 610 |
+
quick_gelu=True,
|
| 611 |
+
cast_dtype=torch.float16,
|
| 612 |
+
):
|
| 613 |
+
vit = "visual.proj" in state_dict
|
| 614 |
+
|
| 615 |
+
if vit:
|
| 616 |
+
vision_width = state_dict["visual.conv1.weight"].shape[0]
|
| 617 |
+
vision_layers = len(
|
| 618 |
+
[k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
|
| 619 |
+
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
|
| 620 |
+
grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
|
| 621 |
+
image_size = vision_patch_size * grid_size
|
| 622 |
+
else:
|
| 623 |
+
counts: list = [
|
| 624 |
+
len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]]
|
| 625 |
+
vision_layers = tuple(counts)
|
| 626 |
+
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
|
| 627 |
+
output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
|
| 628 |
+
vision_patch_size = None
|
| 629 |
+
assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
|
| 630 |
+
image_size = output_width * 32
|
| 631 |
+
|
| 632 |
+
embed_dim = state_dict["text_projection"].shape[1]
|
| 633 |
+
context_length = state_dict["positional_embedding"].shape[0]
|
| 634 |
+
vocab_size = state_dict["token_embedding.weight"].shape[0]
|
| 635 |
+
transformer_width = state_dict["ln_final.weight"].shape[0]
|
| 636 |
+
transformer_heads = transformer_width // 64
|
| 637 |
+
transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks")))
|
| 638 |
+
|
| 639 |
+
vision_cfg = CLIPVisionCfg(
|
| 640 |
+
layers=vision_layers,
|
| 641 |
+
width=vision_width,
|
| 642 |
+
patch_size=vision_patch_size,
|
| 643 |
+
image_size=image_size,
|
| 644 |
+
)
|
| 645 |
+
text_cfg = CLIPTextCfg(
|
| 646 |
+
context_length=context_length,
|
| 647 |
+
vocab_size=vocab_size,
|
| 648 |
+
width=transformer_width,
|
| 649 |
+
heads=transformer_heads,
|
| 650 |
+
layers=transformer_layers,
|
| 651 |
+
)
|
| 652 |
+
model = CLIP(
|
| 653 |
+
embed_dim,
|
| 654 |
+
vision_cfg=vision_cfg,
|
| 655 |
+
text_cfg=text_cfg,
|
| 656 |
+
quick_gelu=quick_gelu, # OpenAI models were trained with QuickGELU
|
| 657 |
+
cast_dtype=cast_dtype,
|
| 658 |
+
)
|
| 659 |
+
|
| 660 |
+
for key in ["input_resolution", "context_length", "vocab_size"]:
|
| 661 |
+
state_dict.pop(key, None)
|
| 662 |
+
convert_weights_to_fp16(model) # OpenAI state dicts are partially converted to float16
|
| 663 |
+
model.load_state_dict(state_dict, strict=True)
|
| 664 |
+
return model.eval()
|
| 665 |
+
|
| 666 |
+
|
| 667 |
+
def trace_model(model, batch_size=256, device=torch.device('cpu')):
|
| 668 |
+
model.eval()
|
| 669 |
+
image_size = model.visual.image_size
|
| 670 |
+
example_images = torch.ones((batch_size, 3, image_size, image_size), device=device)
|
| 671 |
+
example_text = torch.zeros((batch_size, model.context_length), dtype=torch.int, device=device)
|
| 672 |
+
model = torch.jit.trace_module(
|
| 673 |
+
model,
|
| 674 |
+
inputs=dict(
|
| 675 |
+
forward=(example_images, example_text),
|
| 676 |
+
encode_text=(example_text,),
|
| 677 |
+
encode_image=(example_images,)
|
| 678 |
+
))
|
| 679 |
+
model.visual.image_size = image_size
|
| 680 |
+
return model
|
| 681 |
+
#
|
| 682 |
+
#
|
| 683 |
+
# def resize_pos_embed(state_dict, model, interpolation: str = 'bicubic', antialias: bool = True):
|
| 684 |
+
# # Rescale the grid of position embeddings when loading from state_dict
|
| 685 |
+
# old_pos_embed = state_dict.get('visual.positional_embedding', None)
|
| 686 |
+
# if old_pos_embed is None or not hasattr(model.visual, 'grid_size'):
|
| 687 |
+
# return
|
| 688 |
+
# grid_size = to_2tuple(model.visual.grid_size)
|
| 689 |
+
# extra_tokens = 1 # FIXME detect different token configs (ie no class token, or more)
|
| 690 |
+
# new_seq_len = grid_size[0] * grid_size[1] + extra_tokens
|
| 691 |
+
# if new_seq_len == old_pos_embed.shape[0]:
|
| 692 |
+
# return
|
| 693 |
+
#
|
| 694 |
+
# if extra_tokens:
|
| 695 |
+
# pos_emb_tok, pos_emb_img = old_pos_embed[:extra_tokens], old_pos_embed[extra_tokens:]
|
| 696 |
+
# else:
|
| 697 |
+
# pos_emb_tok, pos_emb_img = None, old_pos_embed
|
| 698 |
+
# old_grid_size = to_2tuple(int(math.sqrt(len(pos_emb_img))))
|
| 699 |
+
#
|
| 700 |
+
# logging.info('Resizing position embedding grid-size from %s to %s', old_grid_size, grid_size)
|
| 701 |
+
# pos_emb_img = pos_emb_img.reshape(1, old_grid_size[0], old_grid_size[1], -1).permute(0, 3, 1, 2)
|
| 702 |
+
# pos_emb_img = F.interpolate(
|
| 703 |
+
# pos_emb_img,
|
| 704 |
+
# size=grid_size,
|
| 705 |
+
# mode=interpolation,
|
| 706 |
+
# antialias=antialias,
|
| 707 |
+
# align_corners=False,
|
| 708 |
+
# )
|
| 709 |
+
# pos_emb_img = pos_emb_img.permute(0, 2, 3, 1).reshape(1, grid_size[0] * grid_size[1], -1)[0]
|
| 710 |
+
# if pos_emb_tok is not None:
|
| 711 |
+
# new_pos_embed = torch.cat([pos_emb_tok, pos_emb_img], dim=0)
|
| 712 |
+
# else:
|
| 713 |
+
# new_pos_embed = pos_emb_img
|
| 714 |
+
# state_dict['visual.positional_embedding'] = new_pos_embed
|
| 715 |
+
|
| 716 |
+
|
| 717 |
+
def resize_text_pos_embed(state_dict, model, interpolation: str = 'linear', antialias: bool = False):
|
| 718 |
+
old_pos_embed = state_dict.get('positional_embedding', None)
|
| 719 |
+
if old_pos_embed is None:
|
| 720 |
+
return
|
| 721 |
+
# FIXME add support for text cls_token
|
| 722 |
+
model_pos_embed = getattr(model, 'positional_embedding', None)
|
| 723 |
+
if model_pos_embed is None:
|
| 724 |
+
model_pos_embed = getattr(model.text, 'positional_embedding', None)
|
| 725 |
+
|
| 726 |
+
old_num_pos = old_pos_embed.shape[0]
|
| 727 |
+
old_width = old_pos_embed.shape[1]
|
| 728 |
+
num_pos = model_pos_embed.shape[0]
|
| 729 |
+
width = model_pos_embed.shape[1]
|
| 730 |
+
assert old_width == width, 'text pos_embed width changed!'
|
| 731 |
+
if old_num_pos == num_pos:
|
| 732 |
+
return
|
| 733 |
+
|
| 734 |
+
logging.info('Resizing text position embedding num_pos from %s to %s', old_num_pos, num_pos)
|
| 735 |
+
old_pos_embed = old_pos_embed.reshape(1, old_num_pos, old_width).permute(0, 2, 1)
|
| 736 |
+
old_pos_embed = F.interpolate(
|
| 737 |
+
old_pos_embed,
|
| 738 |
+
size=num_pos,
|
| 739 |
+
mode=interpolation,
|
| 740 |
+
antialias=antialias,
|
| 741 |
+
align_corners=False,
|
| 742 |
+
)
|
| 743 |
+
old_pos_embed = old_pos_embed.permute(0, 2, 1)[0]
|
| 744 |
+
new_pos_embed = old_pos_embed
|
| 745 |
+
|
| 746 |
+
state_dict['positional_embedding'] = new_pos_embed
|
| 747 |
+
|
| 748 |
+
|
| 749 |
+
def get_model_preprocess_cfg(model):
|
| 750 |
+
module = getattr(model, 'visual', model)
|
| 751 |
+
preprocess_cfg = getattr(module, 'preprocess_cfg', {})
|
| 752 |
+
if not preprocess_cfg:
|
| 753 |
+
# use separate legacy attributes if preprocess_cfg dict not found
|
| 754 |
+
size = getattr(module, 'image_size')
|
| 755 |
+
if size is not None:
|
| 756 |
+
preprocess_cfg['size'] = size
|
| 757 |
+
mean = getattr(module, 'image_mean', None)
|
| 758 |
+
if mean is not None:
|
| 759 |
+
preprocess_cfg['mean'] = mean
|
| 760 |
+
std = getattr(module, 'image_std', None)
|
| 761 |
+
if std is not None:
|
| 762 |
+
preprocess_cfg['std'] = std
|
| 763 |
+
return preprocess_cfg
|
| 764 |
+
|
| 765 |
+
|
| 766 |
+
def set_model_preprocess_cfg(model, preprocess_cfg: Dict[str, Any]):
|
| 767 |
+
module = getattr(model, 'visual', model)
|
| 768 |
+
module.image_mean = preprocess_cfg['mean'] # legacy attribute, keeping for bwd compat
|
| 769 |
+
module.image_std = preprocess_cfg['std'] # legacy attribute, keeping for bwd compat
|
| 770 |
+
module.preprocess_cfg = copy.deepcopy(preprocess_cfg) # new attr, package all pp cfg as dict
|
| 771 |
+
|
| 772 |
+
|
| 773 |
+
def get_model_tokenize_cfg(model):
|
| 774 |
+
module = getattr(model, 'text', model)
|
| 775 |
+
cfg = {}
|
| 776 |
+
context_length = getattr(module, 'context_length', None)
|
| 777 |
+
if context_length is not None:
|
| 778 |
+
cfg['context_length'] = context_length
|
| 779 |
+
vocab_size = getattr(module, 'vocab_size', None)
|
| 780 |
+
if vocab_size is not None:
|
| 781 |
+
cfg['vocab_size'] = vocab_size
|
| 782 |
+
return cfg
|
src/open_clip/model_configs/ViT-L-14-336.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"embed_dim": 768,
|
| 3 |
+
"vision_cfg": {
|
| 4 |
+
"image_size": 336,
|
| 5 |
+
"layers": 24,
|
| 6 |
+
"width": 1024,
|
| 7 |
+
"patch_size": 14
|
| 8 |
+
},
|
| 9 |
+
"text_cfg": {
|
| 10 |
+
"context_length": 77,
|
| 11 |
+
"vocab_size": 49408,
|
| 12 |
+
"width": 768,
|
| 13 |
+
"heads": 12,
|
| 14 |
+
"layers": 12
|
| 15 |
+
}
|
| 16 |
+
}
|
src/open_clip/openai.py
ADDED
|
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
""" OpenAI pretrained model functions
|
| 2 |
+
|
| 3 |
+
Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import os
|
| 7 |
+
import warnings
|
| 8 |
+
from typing import List, Optional, Union
|
| 9 |
+
|
| 10 |
+
import torch
|
| 11 |
+
|
| 12 |
+
from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
|
| 13 |
+
from .model import build_model_from_openai_state_dict, convert_weights_to_lp, get_cast_dtype
|
| 14 |
+
from .pretrained import get_pretrained_url, list_pretrained_models_by_tag, download_pretrained_from_url
|
| 15 |
+
|
| 16 |
+
__all__ = ["list_openai_models", "load_openai_model"]
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def list_openai_models() -> List[str]:
|
| 20 |
+
"""Returns the names of available CLIP models"""
|
| 21 |
+
return list_pretrained_models_by_tag('openai')
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def load_openai_model(
|
| 25 |
+
name: str,
|
| 26 |
+
precision: Optional[str] = None,
|
| 27 |
+
device: Optional[Union[str, torch.device]] = None,
|
| 28 |
+
cache_dir: Optional[str] = None,
|
| 29 |
+
):
|
| 30 |
+
"""Load a CLIP model
|
| 31 |
+
|
| 32 |
+
Parameters
|
| 33 |
+
----------
|
| 34 |
+
name : str
|
| 35 |
+
A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict
|
| 36 |
+
precision: str
|
| 37 |
+
Model precision, if None defaults to 'fp32' if device == 'cpu' else 'fp16'.
|
| 38 |
+
device : Union[str, torch.device]
|
| 39 |
+
The device to put the loaded model
|
| 40 |
+
cache_dir : Optional[str]
|
| 41 |
+
The directory to cache the downloaded model weights
|
| 42 |
+
|
| 43 |
+
Returns
|
| 44 |
+
-------
|
| 45 |
+
model : torch.nn.Module
|
| 46 |
+
The CLIP model
|
| 47 |
+
preprocess : Callable[[PIL.Image], torch.Tensor]
|
| 48 |
+
A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input
|
| 49 |
+
"""
|
| 50 |
+
if device is None:
|
| 51 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 52 |
+
if precision is None:
|
| 53 |
+
precision = 'fp32' if device == 'cpu' else 'fp16'
|
| 54 |
+
|
| 55 |
+
if get_pretrained_url(name, 'openai'):
|
| 56 |
+
model_path = download_pretrained_from_url(get_pretrained_url(name, 'openai'), cache_dir=cache_dir)
|
| 57 |
+
elif os.path.isfile(name):
|
| 58 |
+
model_path = name
|
| 59 |
+
else:
|
| 60 |
+
raise RuntimeError(f"Model {name} not found; available models = {list_openai_models()}")
|
| 61 |
+
|
| 62 |
+
try:
|
| 63 |
+
# loading JIT archive
|
| 64 |
+
model = torch.jit.load(model_path, map_location="cpu").eval()
|
| 65 |
+
state_dict = None
|
| 66 |
+
except RuntimeError:
|
| 67 |
+
# loading saved state dict
|
| 68 |
+
state_dict = torch.load(model_path, map_location="cpu")
|
| 69 |
+
|
| 70 |
+
# Build a non-jit model from the OpenAI jitted model state dict
|
| 71 |
+
cast_dtype = get_cast_dtype(precision)
|
| 72 |
+
try:
|
| 73 |
+
model = build_model_from_openai_state_dict(state_dict or model.state_dict(), cast_dtype=cast_dtype)
|
| 74 |
+
except KeyError:
|
| 75 |
+
sd = {k[7:]: v for k, v in state_dict["state_dict"].items()}
|
| 76 |
+
model = build_model_from_openai_state_dict(sd, cast_dtype=cast_dtype)
|
| 77 |
+
|
| 78 |
+
# model from OpenAI state dict is in manually cast fp16 mode, must be converted for AMP/fp32/bf16 use
|
| 79 |
+
model = model.to(device)
|
| 80 |
+
# FIXME support pure fp16/bf16 precision modes
|
| 81 |
+
if precision != 'fp16':
|
| 82 |
+
model.float()
|
| 83 |
+
if precision == 'bf16':
|
| 84 |
+
# for bf16, convert back to low-precision
|
| 85 |
+
convert_weights_to_lp(model, dtype=torch.bfloat16)
|
| 86 |
+
|
| 87 |
+
# add mean / std attributes for consistency with OpenCLIP models
|
| 88 |
+
model.visual.image_mean = OPENAI_DATASET_MEAN
|
| 89 |
+
model.visual.image_std = OPENAI_DATASET_STD
|
| 90 |
+
return model
|
src/open_clip/pos_embed.py
ADDED
|
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
# All rights reserved.
|
| 3 |
+
|
| 4 |
+
# This source code is licensed under the license found in the
|
| 5 |
+
# LICENSE file in the root directory of this source tree.
|
| 6 |
+
# --------------------------------------------------------
|
| 7 |
+
# Position embedding utils
|
| 8 |
+
# --------------------------------------------------------
|
| 9 |
+
|
| 10 |
+
import numpy as np
|
| 11 |
+
|
| 12 |
+
import torch
|
| 13 |
+
|
| 14 |
+
# --------------------------------------------------------
|
| 15 |
+
# 2D sine-cosine position embedding
|
| 16 |
+
# References:
|
| 17 |
+
# Transformer: https://github.com/tensorflow/models/blob/master/official/nlp/transformer/model_utils.py
|
| 18 |
+
# MoCo v3: https://github.com/facebookresearch/moco-v3
|
| 19 |
+
# --------------------------------------------------------
|
| 20 |
+
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
|
| 21 |
+
"""
|
| 22 |
+
grid_size: int of the grid height and width
|
| 23 |
+
return:
|
| 24 |
+
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
|
| 25 |
+
"""
|
| 26 |
+
grid_h = np.arange(grid_size, dtype=np.float32)
|
| 27 |
+
grid_w = np.arange(grid_size, dtype=np.float32)
|
| 28 |
+
grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
| 29 |
+
grid = np.stack(grid, axis=0)
|
| 30 |
+
|
| 31 |
+
grid = grid.reshape([2, 1, grid_size, grid_size])
|
| 32 |
+
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
|
| 33 |
+
if cls_token:
|
| 34 |
+
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
|
| 35 |
+
return pos_embed
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
|
| 39 |
+
assert embed_dim % 2 == 0
|
| 40 |
+
|
| 41 |
+
# use half of dimensions to encode grid_h
|
| 42 |
+
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
|
| 43 |
+
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
|
| 44 |
+
|
| 45 |
+
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
|
| 46 |
+
return emb
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
|
| 50 |
+
"""
|
| 51 |
+
embed_dim: output dimension for each position
|
| 52 |
+
pos: a list of positions to be encoded: size (M,)
|
| 53 |
+
out: (M, D)
|
| 54 |
+
"""
|
| 55 |
+
assert embed_dim % 2 == 0
|
| 56 |
+
omega = np.arange(embed_dim // 2, dtype=float)
|
| 57 |
+
omega /= embed_dim / 2.
|
| 58 |
+
omega = 1. / 10000**omega # (D/2,)
|
| 59 |
+
|
| 60 |
+
pos = pos.reshape(-1) # (M,)
|
| 61 |
+
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
|
| 62 |
+
|
| 63 |
+
emb_sin = np.sin(out) # (M, D/2)
|
| 64 |
+
emb_cos = np.cos(out) # (M, D/2)
|
| 65 |
+
|
| 66 |
+
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
|
| 67 |
+
return emb
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
# --------------------------------------------------------
|
| 71 |
+
# Interpolate position embeddings for high-resolution
|
| 72 |
+
# References:
|
| 73 |
+
# DeiT: https://github.com/facebookresearch/deit
|
| 74 |
+
# --------------------------------------------------------
|
| 75 |
+
def interpolate_pos_embed(model, checkpoint_model):
|
| 76 |
+
if 'pos_embed' in checkpoint_model:
|
| 77 |
+
pos_embed_checkpoint = checkpoint_model['pos_embed']
|
| 78 |
+
embedding_size = pos_embed_checkpoint.shape[-1]
|
| 79 |
+
num_patches = model.patch_embed.num_patches
|
| 80 |
+
num_extra_tokens = model.pos_embed.shape[-2] - num_patches
|
| 81 |
+
# height (== width) for the checkpoint position embedding
|
| 82 |
+
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
|
| 83 |
+
# height (== width) for the new position embedding
|
| 84 |
+
new_size = int(num_patches ** 0.5)
|
| 85 |
+
# class_token and dist_token are kept unchanged
|
| 86 |
+
if orig_size != new_size:
|
| 87 |
+
print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size))
|
| 88 |
+
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
|
| 89 |
+
# only the position tokens are interpolated
|
| 90 |
+
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
|
| 91 |
+
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
|
| 92 |
+
pos_tokens = torch.nn.functional.interpolate(
|
| 93 |
+
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
|
| 94 |
+
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
|
| 95 |
+
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
|
| 96 |
+
checkpoint_model['pos_embed'] = new_pos_embed
|
src/open_clip/pretrained.py
ADDED
|
@@ -0,0 +1,655 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import hashlib
|
| 2 |
+
import os
|
| 3 |
+
import urllib
|
| 4 |
+
import warnings
|
| 5 |
+
from functools import partial
|
| 6 |
+
from typing import Dict, Union
|
| 7 |
+
|
| 8 |
+
from tqdm import tqdm
|
| 9 |
+
|
| 10 |
+
from .constants import (
|
| 11 |
+
IMAGENET_MEAN,
|
| 12 |
+
IMAGENET_STD,
|
| 13 |
+
INCEPTION_MEAN,
|
| 14 |
+
INCEPTION_STD,
|
| 15 |
+
OPENAI_DATASET_MEAN,
|
| 16 |
+
OPENAI_DATASET_STD,
|
| 17 |
+
)
|
| 18 |
+
from .version import __version__
|
| 19 |
+
|
| 20 |
+
try:
|
| 21 |
+
from huggingface_hub import hf_hub_download
|
| 22 |
+
hf_hub_download = partial(hf_hub_download, library_name="open_clip", library_version=__version__)
|
| 23 |
+
_has_hf_hub = True
|
| 24 |
+
except ImportError:
|
| 25 |
+
hf_hub_download = None
|
| 26 |
+
_has_hf_hub = False
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def _pcfg(url='', hf_hub='', **kwargs):
|
| 30 |
+
# OpenAI / OpenCLIP defaults
|
| 31 |
+
return {
|
| 32 |
+
'url': url,
|
| 33 |
+
'hf_hub': hf_hub,
|
| 34 |
+
'mean': OPENAI_DATASET_MEAN,
|
| 35 |
+
'std': OPENAI_DATASET_STD,
|
| 36 |
+
'interpolation': 'bicubic',
|
| 37 |
+
'resize_mode': 'shortest',
|
| 38 |
+
**kwargs,
|
| 39 |
+
}
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def _slpcfg(url='', hf_hub='', **kwargs):
|
| 43 |
+
# SiGLIP defaults
|
| 44 |
+
return {
|
| 45 |
+
'url': url,
|
| 46 |
+
'hf_hub': hf_hub,
|
| 47 |
+
'mean': INCEPTION_MEAN,
|
| 48 |
+
'std': INCEPTION_STD,
|
| 49 |
+
'interpolation': 'bicubic',
|
| 50 |
+
'resize_mode': 'squash',
|
| 51 |
+
**kwargs,
|
| 52 |
+
}
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def _apcfg(url='', hf_hub='', **kwargs):
|
| 56 |
+
# CLIPA defaults
|
| 57 |
+
return {
|
| 58 |
+
'url': url,
|
| 59 |
+
'hf_hub': hf_hub,
|
| 60 |
+
'mean': IMAGENET_MEAN,
|
| 61 |
+
'std': IMAGENET_STD,
|
| 62 |
+
'interpolation': 'bilinear',
|
| 63 |
+
'resize_mode': 'squash',
|
| 64 |
+
**kwargs,
|
| 65 |
+
}
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def _mccfg(url='', hf_hub='', **kwargs):
|
| 69 |
+
# MobileCLIP
|
| 70 |
+
return {
|
| 71 |
+
'url': url,
|
| 72 |
+
'hf_hub': hf_hub,
|
| 73 |
+
'mean': (0., 0., 0.),
|
| 74 |
+
'std': (1., 1., 1.),
|
| 75 |
+
'interpolation': 'bilinear',
|
| 76 |
+
'resize_mode': 'shortest',
|
| 77 |
+
**kwargs,
|
| 78 |
+
}
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
_RN50 = dict(
|
| 83 |
+
openai=_pcfg(
|
| 84 |
+
"https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt"),
|
| 85 |
+
yfcc15m=_pcfg(
|
| 86 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn50-quickgelu-yfcc15m-455df137.pt"),
|
| 87 |
+
cc12m=_pcfg(
|
| 88 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn50-quickgelu-cc12m-f000538c.pt"),
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
_RN50_quickgelu = dict(
|
| 92 |
+
openai=_pcfg(
|
| 93 |
+
"https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt"),
|
| 94 |
+
yfcc15m=_pcfg(
|
| 95 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn50-quickgelu-yfcc15m-455df137.pt"),
|
| 96 |
+
cc12m=_pcfg(
|
| 97 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn50-quickgelu-cc12m-f000538c.pt"),
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
_RN101 = dict(
|
| 101 |
+
openai=_pcfg(
|
| 102 |
+
"https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt"),
|
| 103 |
+
yfcc15m=_pcfg(
|
| 104 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn101-quickgelu-yfcc15m-3e04b30e.pt"),
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
_RN101_quickgelu = dict(
|
| 108 |
+
openai=_pcfg(
|
| 109 |
+
"https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt"),
|
| 110 |
+
yfcc15m=_pcfg(
|
| 111 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn101-quickgelu-yfcc15m-3e04b30e.pt"),
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
_RN50x4 = dict(
|
| 115 |
+
openai=_pcfg(
|
| 116 |
+
"https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt"),
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
_RN50x16 = dict(
|
| 120 |
+
openai=_pcfg(
|
| 121 |
+
"https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt"),
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
_RN50x64 = dict(
|
| 125 |
+
openai=_pcfg(
|
| 126 |
+
"https://openaipublic.azureedge.net/clip/models/be1cfb55d75a9666199fb2206c106743da0f6468c9d327f3e0d0a543a9919d9c/RN50x64.pt"),
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
_VITB32 = dict(
|
| 130 |
+
openai=_pcfg(
|
| 131 |
+
"https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt"),
|
| 132 |
+
laion400m_e31=_pcfg(
|
| 133 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e31-d867053b.pt"),
|
| 134 |
+
laion400m_e32=_pcfg(
|
| 135 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e32-46683a32.pt"),
|
| 136 |
+
laion2b_e16=_pcfg(
|
| 137 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-laion2b_e16-af8dbd0c.pth"),
|
| 138 |
+
laion2b_s34b_b79k=_pcfg(hf_hub='laion/CLIP-ViT-B-32-laion2B-s34B-b79K/'),
|
| 139 |
+
# DataComp-XL models
|
| 140 |
+
datacomp_xl_s13b_b90k=_pcfg(hf_hub='laion/CLIP-ViT-B-32-DataComp.XL-s13B-b90K/'),
|
| 141 |
+
# DataComp-M models
|
| 142 |
+
datacomp_m_s128m_b4k=_pcfg(hf_hub='laion/CLIP-ViT-B-32-DataComp.M-s128M-b4K/'),
|
| 143 |
+
commonpool_m_clip_s128m_b4k=_pcfg(hf_hub='laion/CLIP-ViT-B-32-CommonPool.M.clip-s128M-b4K/'),
|
| 144 |
+
commonpool_m_laion_s128m_b4k=_pcfg(hf_hub='laion/CLIP-ViT-B-32-CommonPool.M.laion-s128M-b4K/'),
|
| 145 |
+
commonpool_m_image_s128m_b4k=_pcfg(hf_hub='laion/CLIP-ViT-B-32-CommonPool.M.image-s128M-b4K/'),
|
| 146 |
+
commonpool_m_text_s128m_b4k=_pcfg(hf_hub='laion/CLIP-ViT-B-32-CommonPool.M.text-s128M-b4K/'),
|
| 147 |
+
commonpool_m_basic_s128m_b4k=_pcfg(hf_hub='laion/CLIP-ViT-B-32-CommonPool.M.basic-s128M-b4K/'),
|
| 148 |
+
commonpool_m_s128m_b4k=_pcfg(hf_hub='laion/CLIP-ViT-B-32-CommonPool.M-s128M-b4K/'),
|
| 149 |
+
# DataComp-S models
|
| 150 |
+
datacomp_s_s13m_b4k=_pcfg(hf_hub='laion/CLIP-ViT-B-32-DataComp.S-s13M-b4K/'),
|
| 151 |
+
commonpool_s_clip_s13m_b4k=_pcfg(hf_hub='laion/CLIP-ViT-B-32-CommonPool.S.clip-s13M-b4K/'),
|
| 152 |
+
commonpool_s_laion_s13m_b4k=_pcfg(hf_hub='laion/CLIP-ViT-B-32-CommonPool.S.laion-s13M-b4K/'),
|
| 153 |
+
commonpool_s_image_s13m_b4k=_pcfg(hf_hub='laion/CLIP-ViT-B-32-CommonPool.S.image-s13M-b4K/'),
|
| 154 |
+
commonpool_s_text_s13m_b4k=_pcfg(hf_hub='laion/CLIP-ViT-B-32-CommonPool.S.text-s13M-b4K/'),
|
| 155 |
+
commonpool_s_basic_s13m_b4k=_pcfg(hf_hub='laion/CLIP-ViT-B-32-CommonPool.S.basic-s13M-b4K/'),
|
| 156 |
+
commonpool_s_s13m_b4k=_pcfg(hf_hub='laion/CLIP-ViT-B-32-CommonPool.S-s13M-b4K/'),
|
| 157 |
+
)
|
| 158 |
+
|
| 159 |
+
_VITB32_quickgelu = dict(
|
| 160 |
+
openai=_pcfg(
|
| 161 |
+
"https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt"),
|
| 162 |
+
laion400m_e31=_pcfg(
|
| 163 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e31-d867053b.pt"),
|
| 164 |
+
laion400m_e32=_pcfg(
|
| 165 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e32-46683a32.pt"),
|
| 166 |
+
metaclip_400m=_pcfg(
|
| 167 |
+
"https://dl.fbaipublicfiles.com/MMPT/metaclip/b32_400m.pt"),
|
| 168 |
+
metaclip_fullcc=_pcfg(
|
| 169 |
+
"https://dl.fbaipublicfiles.com/MMPT/metaclip/b32_fullcc2.5b.pt"),
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
_VITB32_256 = dict(
|
| 173 |
+
datacomp_s34b_b86k=_pcfg(hf_hub='laion/CLIP-ViT-B-32-256x256-DataComp-s34B-b86K/'),
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
_VITB16 = dict(
|
| 177 |
+
openai=_pcfg(
|
| 178 |
+
"https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt"),
|
| 179 |
+
laion400m_e31=_pcfg(
|
| 180 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16-laion400m_e31-00efa78f.pt"),
|
| 181 |
+
laion400m_e32=_pcfg(
|
| 182 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16-laion400m_e32-55e67d44.pt"),
|
| 183 |
+
laion2b_s34b_b88k=_pcfg(hf_hub='laion/CLIP-ViT-B-16-laion2B-s34B-b88K/'),
|
| 184 |
+
# DataComp-XL models
|
| 185 |
+
datacomp_xl_s13b_b90k=_pcfg(hf_hub='laion/CLIP-ViT-B-16-DataComp.XL-s13B-b90K/'),
|
| 186 |
+
# DataComp-L models
|
| 187 |
+
datacomp_l_s1b_b8k=_pcfg(hf_hub='laion/CLIP-ViT-B-16-DataComp.L-s1B-b8K/'),
|
| 188 |
+
commonpool_l_clip_s1b_b8k=_pcfg(hf_hub='laion/CLIP-ViT-B-16-CommonPool.L.clip-s1B-b8K/'),
|
| 189 |
+
commonpool_l_laion_s1b_b8k=_pcfg(hf_hub='laion/CLIP-ViT-B-16-CommonPool.L.laion-s1B-b8K/'),
|
| 190 |
+
commonpool_l_image_s1b_b8k=_pcfg(hf_hub='laion/CLIP-ViT-B-16-CommonPool.L.image-s1B-b8K/'),
|
| 191 |
+
commonpool_l_text_s1b_b8k=_pcfg(hf_hub='laion/CLIP-ViT-B-16-CommonPool.L.text-s1B-b8K/'),
|
| 192 |
+
commonpool_l_basic_s1b_b8k=_pcfg(hf_hub='laion/CLIP-ViT-B-16-CommonPool.L.basic-s1B-b8K/'),
|
| 193 |
+
commonpool_l_s1b_b8k=_pcfg(hf_hub='laion/CLIP-ViT-B-16-CommonPool.L-s1B-b8K/'),
|
| 194 |
+
# DFN
|
| 195 |
+
dfn2b=_pcfg(hf_hub='apple/DFN2B-CLIP-ViT-B-16/')
|
| 196 |
+
)
|
| 197 |
+
|
| 198 |
+
_VITB16_quickgelu = dict(
|
| 199 |
+
metaclip_400m=_pcfg(
|
| 200 |
+
"https://dl.fbaipublicfiles.com/MMPT/metaclip/b16_400m.pt"),
|
| 201 |
+
metaclip_fullcc=_pcfg(
|
| 202 |
+
"https://dl.fbaipublicfiles.com/MMPT/metaclip/b16_fullcc2.5b.pt"),
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
+
_VITB16_PLUS_240 = dict(
|
| 206 |
+
laion400m_e31=_pcfg(
|
| 207 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16_plus_240-laion400m_e31-8fb26589.pt"),
|
| 208 |
+
laion400m_e32=_pcfg(
|
| 209 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16_plus_240-laion400m_e32-699c4b84.pt"),
|
| 210 |
+
)
|
| 211 |
+
|
| 212 |
+
_VITL14 = dict(
|
| 213 |
+
openai=_pcfg(
|
| 214 |
+
"https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt"),
|
| 215 |
+
laion400m_e31=_pcfg(
|
| 216 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_l_14-laion400m_e31-69988bb6.pt"),
|
| 217 |
+
laion400m_e32=_pcfg(
|
| 218 |
+
"https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_l_14-laion400m_e32-3d133497.pt"),
|
| 219 |
+
laion2b_s32b_b82k=_pcfg(
|
| 220 |
+
hf_hub='laion/CLIP-ViT-L-14-laion2B-s32B-b82K/',
|
| 221 |
+
mean=INCEPTION_MEAN, std=INCEPTION_STD),
|
| 222 |
+
# DataComp-XL models
|
| 223 |
+
datacomp_xl_s13b_b90k=_pcfg(hf_hub='laion/CLIP-ViT-L-14-DataComp.XL-s13B-b90K/'),
|
| 224 |
+
commonpool_xl_clip_s13b_b90k=_pcfg(hf_hub='laion/CLIP-ViT-L-14-CommonPool.XL.clip-s13B-b90K/'),
|
| 225 |
+
commonpool_xl_laion_s13b_b90k=_pcfg(hf_hub='laion/CLIP-ViT-L-14-CommonPool.XL.laion-s13B-b90K/'),
|
| 226 |
+
commonpool_xl_s13b_b90k=_pcfg(hf_hub='laion/CLIP-ViT-L-14-CommonPool.XL-s13B-b90K/'),
|
| 227 |
+
)
|
| 228 |
+
|
| 229 |
+
_VITL14_quickgelu = dict(
|
| 230 |
+
metaclip_400m=_pcfg(
|
| 231 |
+
"https://dl.fbaipublicfiles.com/MMPT/metaclip/l14_400m.pt"),
|
| 232 |
+
metaclip_fullcc=_pcfg(
|
| 233 |
+
"https://dl.fbaipublicfiles.com/MMPT/metaclip/l14_fullcc2.5b.pt"),
|
| 234 |
+
dfn2b=_pcfg(hf_hub='apple/DFN2B-CLIP-ViT-L-14/'),
|
| 235 |
+
)
|
| 236 |
+
|
| 237 |
+
_VITL14_336 = dict(
|
| 238 |
+
openai=_pcfg(
|
| 239 |
+
"https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt"),
|
| 240 |
+
)
|
| 241 |
+
|
| 242 |
+
_VITH14 = dict(
|
| 243 |
+
laion2b_s32b_b79k=_pcfg(hf_hub='laion/CLIP-ViT-H-14-laion2B-s32B-b79K/'),
|
| 244 |
+
)
|
| 245 |
+
|
| 246 |
+
_VITH14_quickgelu = dict(
|
| 247 |
+
metaclip_fullcc=_pcfg(
|
| 248 |
+
"https://dl.fbaipublicfiles.com/MMPT/metaclip/h14_fullcc2.5b.pt"),
|
| 249 |
+
dfn5b=_pcfg(
|
| 250 |
+
hf_hub='apple/DFN5B-CLIP-ViT-H-14/',
|
| 251 |
+
interpolation="bicubic",
|
| 252 |
+
resize_mode="squash"
|
| 253 |
+
),
|
| 254 |
+
)
|
| 255 |
+
|
| 256 |
+
_VITH14_378_quickgelu = dict(
|
| 257 |
+
dfn5b=_pcfg(
|
| 258 |
+
hf_hub='apple/DFN5B-CLIP-ViT-H-14-378/',
|
| 259 |
+
interpolation="bicubic",
|
| 260 |
+
resize_mode="squash"
|
| 261 |
+
),
|
| 262 |
+
)
|
| 263 |
+
|
| 264 |
+
_VITg14 = dict(
|
| 265 |
+
laion2b_s12b_b42k=_pcfg(hf_hub='laion/CLIP-ViT-g-14-laion2B-s12B-b42K/'),
|
| 266 |
+
laion2b_s34b_b88k=_pcfg(hf_hub='laion/CLIP-ViT-g-14-laion2B-s34B-b88K/'),
|
| 267 |
+
)
|
| 268 |
+
|
| 269 |
+
_VITbigG14 = dict(
|
| 270 |
+
laion2b_s39b_b160k=_pcfg(hf_hub='laion/CLIP-ViT-bigG-14-laion2B-39B-b160k/'),
|
| 271 |
+
)
|
| 272 |
+
|
| 273 |
+
_robertaViTB32 = dict(
|
| 274 |
+
laion2b_s12b_b32k=_pcfg(hf_hub='laion/CLIP-ViT-B-32-roberta-base-laion2B-s12B-b32k/'),
|
| 275 |
+
)
|
| 276 |
+
|
| 277 |
+
_xlmRobertaBaseViTB32 = dict(
|
| 278 |
+
laion5b_s13b_b90k=_pcfg(hf_hub='laion/CLIP-ViT-B-32-xlm-roberta-base-laion5B-s13B-b90k/'),
|
| 279 |
+
)
|
| 280 |
+
|
| 281 |
+
_xlmRobertaLargeFrozenViTH14 = dict(
|
| 282 |
+
frozen_laion5b_s13b_b90k=_pcfg(hf_hub='laion/CLIP-ViT-H-14-frozen-xlm-roberta-large-laion5B-s13B-b90k/'),
|
| 283 |
+
)
|
| 284 |
+
|
| 285 |
+
_convnext_base = dict(
|
| 286 |
+
laion400m_s13b_b51k=_pcfg(hf_hub='laion/CLIP-convnext_base-laion400M-s13B-b51K/'),
|
| 287 |
+
)
|
| 288 |
+
|
| 289 |
+
_convnext_base_w = dict(
|
| 290 |
+
laion2b_s13b_b82k=_pcfg(hf_hub='laion/CLIP-convnext_base_w-laion2B-s13B-b82K/'),
|
| 291 |
+
laion2b_s13b_b82k_augreg=_pcfg(hf_hub='laion/CLIP-convnext_base_w-laion2B-s13B-b82K-augreg/'),
|
| 292 |
+
laion_aesthetic_s13b_b82k=_pcfg(hf_hub='laion/CLIP-convnext_base_w-laion_aesthetic-s13B-b82K/'),
|
| 293 |
+
)
|
| 294 |
+
|
| 295 |
+
_convnext_base_w_320 = dict(
|
| 296 |
+
laion_aesthetic_s13b_b82k=_pcfg(hf_hub='laion/CLIP-convnext_base_w_320-laion_aesthetic-s13B-b82K/'),
|
| 297 |
+
laion_aesthetic_s13b_b82k_augreg=_pcfg(hf_hub='laion/CLIP-convnext_base_w_320-laion_aesthetic-s13B-b82K-augreg/'),
|
| 298 |
+
)
|
| 299 |
+
|
| 300 |
+
_convnext_large_d = dict(
|
| 301 |
+
laion2b_s26b_b102k_augreg=_pcfg(hf_hub='laion/CLIP-convnext_large_d.laion2B-s26B-b102K-augreg/'),
|
| 302 |
+
)
|
| 303 |
+
|
| 304 |
+
_convnext_large_d_320 = dict(
|
| 305 |
+
laion2b_s29b_b131k_ft=_pcfg(hf_hub='laion/CLIP-convnext_large_d_320.laion2B-s29B-b131K-ft/'),
|
| 306 |
+
laion2b_s29b_b131k_ft_soup=_pcfg(hf_hub='laion/CLIP-convnext_large_d_320.laion2B-s29B-b131K-ft-soup/'),
|
| 307 |
+
)
|
| 308 |
+
|
| 309 |
+
_convnext_xxlarge = dict(
|
| 310 |
+
laion2b_s34b_b82k_augreg=_pcfg(hf_hub='laion/CLIP-convnext_xxlarge-laion2B-s34B-b82K-augreg/'),
|
| 311 |
+
laion2b_s34b_b82k_augreg_rewind=_pcfg(hf_hub='laion/CLIP-convnext_xxlarge-laion2B-s34B-b82K-augreg-rewind/'),
|
| 312 |
+
laion2b_s34b_b82k_augreg_soup=_pcfg(hf_hub='laion/CLIP-convnext_xxlarge-laion2B-s34B-b82K-augreg-soup/'),
|
| 313 |
+
)
|
| 314 |
+
|
| 315 |
+
_coca_VITB32 = dict(
|
| 316 |
+
laion2b_s13b_b90k=_pcfg(hf_hub='laion/CoCa-ViT-B-32-laion2B-s13B-b90k/'),
|
| 317 |
+
mscoco_finetuned_laion2b_s13b_b90k=_pcfg(hf_hub='laion/mscoco_finetuned_CoCa-ViT-B-32-laion2B-s13B-b90k/')
|
| 318 |
+
)
|
| 319 |
+
|
| 320 |
+
_coca_VITL14 = dict(
|
| 321 |
+
laion2b_s13b_b90k=_pcfg(hf_hub='laion/CoCa-ViT-L-14-laion2B-s13B-b90k/'),
|
| 322 |
+
mscoco_finetuned_laion2b_s13b_b90k=_pcfg(hf_hub='laion/mscoco_finetuned_CoCa-ViT-L-14-laion2B-s13B-b90k/')
|
| 323 |
+
)
|
| 324 |
+
|
| 325 |
+
|
| 326 |
+
_PRETRAINED = {
|
| 327 |
+
"RN50": _RN50,
|
| 328 |
+
"RN50-quickgelu": _RN50_quickgelu,
|
| 329 |
+
"RN101": _RN101,
|
| 330 |
+
"RN101-quickgelu": _RN101_quickgelu,
|
| 331 |
+
"RN50x4": _RN50x4,
|
| 332 |
+
"RN50x16": _RN50x16,
|
| 333 |
+
"RN50x64": _RN50x64,
|
| 334 |
+
|
| 335 |
+
"ViT-B-32": _VITB32,
|
| 336 |
+
"ViT-B-32-256": _VITB32_256,
|
| 337 |
+
"ViT-B-32-quickgelu": _VITB32_quickgelu,
|
| 338 |
+
"ViT-B-16": _VITB16,
|
| 339 |
+
"ViT-B-16-quickgelu": _VITB16_quickgelu,
|
| 340 |
+
"ViT-B-16-plus-240": _VITB16_PLUS_240,
|
| 341 |
+
"ViT-L-14": _VITL14,
|
| 342 |
+
"ViT-L-14-quickgelu": _VITL14_quickgelu,
|
| 343 |
+
"ViT-L-14-336": _VITL14_336,
|
| 344 |
+
"ViT-H-14": _VITH14,
|
| 345 |
+
"ViT-H-14-quickgelu": _VITH14_quickgelu,
|
| 346 |
+
"ViT-H-14-378-quickgelu": _VITH14_378_quickgelu,
|
| 347 |
+
"ViT-g-14": _VITg14,
|
| 348 |
+
"ViT-bigG-14": _VITbigG14,
|
| 349 |
+
|
| 350 |
+
"roberta-ViT-B-32": _robertaViTB32,
|
| 351 |
+
"xlm-roberta-base-ViT-B-32": _xlmRobertaBaseViTB32,
|
| 352 |
+
"xlm-roberta-large-ViT-H-14": _xlmRobertaLargeFrozenViTH14,
|
| 353 |
+
|
| 354 |
+
"convnext_base": _convnext_base,
|
| 355 |
+
"convnext_base_w": _convnext_base_w,
|
| 356 |
+
"convnext_base_w_320": _convnext_base_w_320,
|
| 357 |
+
"convnext_large_d": _convnext_large_d,
|
| 358 |
+
"convnext_large_d_320": _convnext_large_d_320,
|
| 359 |
+
"convnext_xxlarge": _convnext_xxlarge,
|
| 360 |
+
|
| 361 |
+
"coca_ViT-B-32": _coca_VITB32,
|
| 362 |
+
"coca_ViT-L-14": _coca_VITL14,
|
| 363 |
+
|
| 364 |
+
"EVA01-g-14": dict(
|
| 365 |
+
# from QuanSun/EVA-CLIP/EVA01_CLIP_g_14_psz14_s11B.pt
|
| 366 |
+
laion400m_s11b_b41k=_pcfg(hf_hub='timm/eva_giant_patch14_clip_224.laion400m_s11b_b41k/'),
|
| 367 |
+
),
|
| 368 |
+
"EVA01-g-14-plus": dict(
|
| 369 |
+
# from QuanSun/EVA-CLIP/EVA01_CLIP_g_14_plus_psz14_s11B.pt
|
| 370 |
+
merged2b_s11b_b114k=_pcfg(hf_hub='timm/eva_giant_patch14_plus_clip_224.merged2b_s11b_b114k/'),
|
| 371 |
+
),
|
| 372 |
+
"EVA02-B-16": dict(
|
| 373 |
+
# from QuanSun/EVA-CLIP/EVA02_CLIP_B_psz16_s8B.pt
|
| 374 |
+
merged2b_s8b_b131k=_pcfg(hf_hub='timm/eva02_base_patch16_clip_224.merged2b_s8b_b131k/'),
|
| 375 |
+
),
|
| 376 |
+
"EVA02-L-14": dict(
|
| 377 |
+
# from QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_s4B.pt
|
| 378 |
+
merged2b_s4b_b131k=_pcfg(hf_hub='timm/eva02_large_patch14_clip_224.merged2b_s4b_b131k/'),
|
| 379 |
+
),
|
| 380 |
+
"EVA02-L-14-336": dict(
|
| 381 |
+
# from QuanSun/EVA-CLIP/EVA02_CLIP_L_336_psz14_s6B.pt
|
| 382 |
+
merged2b_s6b_b61k=_pcfg(hf_hub='timm/eva02_large_patch14_clip_336.merged2b_s6b_b61k/'),
|
| 383 |
+
),
|
| 384 |
+
"EVA02-E-14": dict(
|
| 385 |
+
# from QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_s4B.pt
|
| 386 |
+
laion2b_s4b_b115k=_pcfg(hf_hub='timm/eva02_enormous_patch14_clip_224.laion2b_s4b_b115k/'),
|
| 387 |
+
),
|
| 388 |
+
"EVA02-E-14-plus": dict(
|
| 389 |
+
# from QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_plus_s9B.pt
|
| 390 |
+
laion2b_s9b_b144k=_pcfg(hf_hub='timm/eva02_enormous_patch14_plus_clip_224.laion2b_s9b_b144k/'),
|
| 391 |
+
),
|
| 392 |
+
|
| 393 |
+
"ViT-B-16-SigLIP": dict(
|
| 394 |
+
webli=_slpcfg(hf_hub='timm/ViT-B-16-SigLIP/'),
|
| 395 |
+
),
|
| 396 |
+
"ViT-B-16-SigLIP-256": dict(
|
| 397 |
+
webli=_slpcfg(hf_hub='timm/ViT-B-16-SigLIP-256/'),
|
| 398 |
+
),
|
| 399 |
+
"ViT-B-16-SigLIP-i18n-256": dict(
|
| 400 |
+
webli=_slpcfg(hf_hub='timm/ViT-B-16-SigLIP-i18n-256/'),
|
| 401 |
+
),
|
| 402 |
+
"ViT-B-16-SigLIP-384": dict(
|
| 403 |
+
webli=_slpcfg(hf_hub='timm/ViT-B-16-SigLIP-384/'),
|
| 404 |
+
),
|
| 405 |
+
"ViT-B-16-SigLIP-512": dict(
|
| 406 |
+
webli=_slpcfg(hf_hub='timm/ViT-B-16-SigLIP-512/'),
|
| 407 |
+
),
|
| 408 |
+
"ViT-L-16-SigLIP-256": dict(
|
| 409 |
+
webli=_slpcfg(hf_hub='timm/ViT-L-16-SigLIP-256/'),
|
| 410 |
+
),
|
| 411 |
+
"ViT-L-16-SigLIP-384": dict(
|
| 412 |
+
webli=_slpcfg(hf_hub='timm/ViT-L-16-SigLIP-384/'),
|
| 413 |
+
),
|
| 414 |
+
"ViT-SO400M-14-SigLIP": dict(
|
| 415 |
+
webli=_slpcfg(hf_hub='timm/ViT-SO400M-14-SigLIP/'),
|
| 416 |
+
),
|
| 417 |
+
"ViT-SO400M-14-SigLIP-384": dict(
|
| 418 |
+
webli=_slpcfg(hf_hub='timm/ViT-SO400M-14-SigLIP-384/'),
|
| 419 |
+
),
|
| 420 |
+
|
| 421 |
+
"ViT-L-14-CLIPA": dict(
|
| 422 |
+
datacomp1b=_apcfg(hf_hub='UCSC-VLAA/ViT-L-14-CLIPA-datacomp1B/'),
|
| 423 |
+
),
|
| 424 |
+
"ViT-L-14-CLIPA-336": dict(
|
| 425 |
+
datacomp1b=_apcfg(hf_hub='UCSC-VLAA/ViT-L-14-CLIPA-336-datacomp1B/'),
|
| 426 |
+
),
|
| 427 |
+
"ViT-H-14-CLIPA": dict(
|
| 428 |
+
datacomp1b=_apcfg(hf_hub='UCSC-VLAA/ViT-H-14-CLIPA-datacomp1B/'),
|
| 429 |
+
),
|
| 430 |
+
"ViT-H-14-CLIPA-336": dict(
|
| 431 |
+
laion2b=_apcfg(hf_hub='UCSC-VLAA/ViT-H-14-CLIPA-336-laion2B/'),
|
| 432 |
+
datacomp1b=_apcfg(hf_hub='UCSC-VLAA/ViT-H-14-CLIPA-336-datacomp1B/'),
|
| 433 |
+
),
|
| 434 |
+
"ViT-bigG-14-CLIPA": dict(
|
| 435 |
+
datacomp1b=_apcfg(hf_hub='UCSC-VLAA/ViT-bigG-14-CLIPA-datacomp1B/'),
|
| 436 |
+
),
|
| 437 |
+
"ViT-bigG-14-CLIPA-336": dict(
|
| 438 |
+
datacomp1b=_apcfg(hf_hub='UCSC-VLAA/ViT-bigG-14-CLIPA-336-datacomp1B/'),
|
| 439 |
+
),
|
| 440 |
+
|
| 441 |
+
"nllb-clip-base": dict(
|
| 442 |
+
v1=_pcfg(hf_hub='visheratin/nllb-clip-base-oc/'),
|
| 443 |
+
),
|
| 444 |
+
"nllb-clip-large": dict(
|
| 445 |
+
v1=_pcfg(hf_hub='visheratin/nllb-clip-large-oc/'),
|
| 446 |
+
),
|
| 447 |
+
|
| 448 |
+
"nllb-clip-base-siglip": dict(
|
| 449 |
+
v1=_slpcfg(hf_hub='visheratin/nllb-clip-base-siglip/'),
|
| 450 |
+
mrl=_slpcfg(hf_hub='visheratin/nllb-siglip-mrl-base/'),
|
| 451 |
+
),
|
| 452 |
+
"nllb-clip-large-siglip": dict(
|
| 453 |
+
v1=_slpcfg(hf_hub='visheratin/nllb-clip-large-siglip/'),
|
| 454 |
+
mrl=_slpcfg(hf_hub='visheratin/nllb-siglip-mrl-large/'),
|
| 455 |
+
),
|
| 456 |
+
|
| 457 |
+
"MobileCLIP-S1": dict(
|
| 458 |
+
datacompdr=_mccfg(hf_hub='apple/MobileCLIP-S1-OpenCLIP/')),
|
| 459 |
+
"MobileCLIP-S2": dict(
|
| 460 |
+
datacompdr=_mccfg(hf_hub='apple/MobileCLIP-S2-OpenCLIP/')),
|
| 461 |
+
"MobileCLIP-B": dict(
|
| 462 |
+
datacompdr=_mccfg(hf_hub='apple/MobileCLIP-B-OpenCLIP/'),
|
| 463 |
+
datacompdr_lt=_mccfg(hf_hub='apple/MobileCLIP-B-LT-OpenCLIP/'),
|
| 464 |
+
),
|
| 465 |
+
|
| 466 |
+
"ViTamin-S": dict(
|
| 467 |
+
datacomp1b=_pcfg(hf_hub='jienengchen/ViTamin-S/pytorch_model.bin'),
|
| 468 |
+
),
|
| 469 |
+
"ViTamin-S-LTT": dict(
|
| 470 |
+
datacomp1b=_pcfg(hf_hub='jienengchen/ViTamin-S-LTT/pytorch_model.bin'),
|
| 471 |
+
),
|
| 472 |
+
"ViTamin-B": dict(
|
| 473 |
+
datacomp1b=_pcfg(hf_hub='jienengchen/ViTamin-B/pytorch_model.bin'),
|
| 474 |
+
),
|
| 475 |
+
"ViTamin-B-LTT": dict(
|
| 476 |
+
datacomp1b=_pcfg(hf_hub='jienengchen/ViTamin-B-LTT/pytorch_model.bin'),
|
| 477 |
+
),
|
| 478 |
+
"ViTamin-L": dict(
|
| 479 |
+
datacomp1b=_pcfg(hf_hub='jienengchen/ViTamin-L-224px/pytorch_model.bin'),
|
| 480 |
+
),
|
| 481 |
+
"ViTamin-L-256": dict(
|
| 482 |
+
datacomp1b=_pcfg(hf_hub='jienengchen/ViTamin-L-256px/pytorch_model.bin'),
|
| 483 |
+
),
|
| 484 |
+
"ViTamin-L-336": dict(
|
| 485 |
+
datacomp1b=_pcfg(hf_hub='jienengchen/ViTamin-L-336px/pytorch_model.bin'),
|
| 486 |
+
),
|
| 487 |
+
"ViTamin-L-384": dict(
|
| 488 |
+
datacomp1b=_pcfg(hf_hub='jienengchen/ViTamin-L-384px/pytorch_model.bin'),
|
| 489 |
+
),
|
| 490 |
+
"ViTamin-L2": dict(
|
| 491 |
+
datacomp1b=_pcfg(hf_hub='jienengchen/ViTamin-L2-224px/pytorch_model.bin'),
|
| 492 |
+
),
|
| 493 |
+
"ViTamin-L2-256": dict(
|
| 494 |
+
datacomp1b=_pcfg(hf_hub='jienengchen/ViTamin-L2-256px/pytorch_model.bin'),
|
| 495 |
+
),
|
| 496 |
+
"ViTamin-L2-336": dict(
|
| 497 |
+
datacomp1b=_pcfg(hf_hub='jienengchen/ViTamin-L2-336px/pytorch_model.bin'),
|
| 498 |
+
),
|
| 499 |
+
"ViTamin-L2-384": dict(
|
| 500 |
+
datacomp1b=_pcfg(hf_hub='jienengchen/ViTamin-L2-384px/pytorch_model.bin'),
|
| 501 |
+
),
|
| 502 |
+
"ViTamin-XL-256": dict(
|
| 503 |
+
datacomp1b=_pcfg(hf_hub='jienengchen/ViTamin-XL-256px/pytorch_model.bin'),
|
| 504 |
+
),
|
| 505 |
+
"ViTamin-XL-336": dict(
|
| 506 |
+
datacomp1b=_pcfg(hf_hub='jienengchen/ViTamin-XL-336px/pytorch_model.bin'),
|
| 507 |
+
),
|
| 508 |
+
"ViTamin-XL-384": dict(
|
| 509 |
+
datacomp1b=_pcfg(hf_hub='jienengchen/ViTamin-XL-384px/pytorch_model.bin'),
|
| 510 |
+
),
|
| 511 |
+
}
|
| 512 |
+
|
| 513 |
+
|
| 514 |
+
def _clean_tag(tag: str):
|
| 515 |
+
# normalize pretrained tags
|
| 516 |
+
return tag.lower().replace('-', '_')
|
| 517 |
+
|
| 518 |
+
|
| 519 |
+
def list_pretrained(as_str: bool = False):
|
| 520 |
+
""" returns list of pretrained models
|
| 521 |
+
Returns a tuple (model_name, pretrain_tag) by default or 'name:tag' if as_str == True
|
| 522 |
+
"""
|
| 523 |
+
return [':'.join([k, t]) if as_str else (k, t) for k in _PRETRAINED.keys() for t in _PRETRAINED[k].keys()]
|
| 524 |
+
|
| 525 |
+
|
| 526 |
+
def list_pretrained_models_by_tag(tag: str):
|
| 527 |
+
""" return all models having the specified pretrain tag """
|
| 528 |
+
models = []
|
| 529 |
+
tag = _clean_tag(tag)
|
| 530 |
+
for k in _PRETRAINED.keys():
|
| 531 |
+
if tag in _PRETRAINED[k]:
|
| 532 |
+
models.append(k)
|
| 533 |
+
return models
|
| 534 |
+
|
| 535 |
+
|
| 536 |
+
def list_pretrained_tags_by_model(model: str):
|
| 537 |
+
""" return all pretrain tags for the specified model architecture """
|
| 538 |
+
tags = []
|
| 539 |
+
if model in _PRETRAINED:
|
| 540 |
+
tags.extend(_PRETRAINED[model].keys())
|
| 541 |
+
return tags
|
| 542 |
+
|
| 543 |
+
|
| 544 |
+
def is_pretrained_cfg(model: str, tag: str):
|
| 545 |
+
if model not in _PRETRAINED:
|
| 546 |
+
return False
|
| 547 |
+
return _clean_tag(tag) in _PRETRAINED[model]
|
| 548 |
+
|
| 549 |
+
|
| 550 |
+
def get_pretrained_cfg(model: str, tag: str):
|
| 551 |
+
if model not in _PRETRAINED:
|
| 552 |
+
return {}
|
| 553 |
+
model_pretrained = _PRETRAINED[model]
|
| 554 |
+
return model_pretrained.get(_clean_tag(tag), {})
|
| 555 |
+
|
| 556 |
+
|
| 557 |
+
def get_pretrained_url(model: str, tag: str):
|
| 558 |
+
cfg = get_pretrained_cfg(model, _clean_tag(tag))
|
| 559 |
+
return cfg.get('url', '')
|
| 560 |
+
|
| 561 |
+
|
| 562 |
+
def download_pretrained_from_url(
|
| 563 |
+
url: str,
|
| 564 |
+
cache_dir: Union[str, None] = None,
|
| 565 |
+
):
|
| 566 |
+
if not cache_dir:
|
| 567 |
+
cache_dir = os.path.expanduser("~/.cache/clip")
|
| 568 |
+
os.makedirs(cache_dir, exist_ok=True)
|
| 569 |
+
filename = os.path.basename(url)
|
| 570 |
+
|
| 571 |
+
if 'openaipublic' in url:
|
| 572 |
+
expected_sha256 = url.split("/")[-2]
|
| 573 |
+
elif 'mlfoundations' in url:
|
| 574 |
+
expected_sha256 = os.path.splitext(filename)[0].split("-")[-1]
|
| 575 |
+
else:
|
| 576 |
+
expected_sha256 = ''
|
| 577 |
+
|
| 578 |
+
download_target = os.path.join(cache_dir, filename)
|
| 579 |
+
|
| 580 |
+
if os.path.exists(download_target) and not os.path.isfile(download_target):
|
| 581 |
+
raise RuntimeError(f"{download_target} exists and is not a regular file")
|
| 582 |
+
|
| 583 |
+
if os.path.isfile(download_target):
|
| 584 |
+
if expected_sha256:
|
| 585 |
+
if hashlib.sha256(open(download_target, "rb").read()).hexdigest().startswith(expected_sha256):
|
| 586 |
+
return download_target
|
| 587 |
+
else:
|
| 588 |
+
warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file")
|
| 589 |
+
else:
|
| 590 |
+
return download_target
|
| 591 |
+
|
| 592 |
+
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
|
| 593 |
+
with tqdm(total=int(source.headers.get("Content-Length")), ncols=80, unit='iB', unit_scale=True) as loop:
|
| 594 |
+
while True:
|
| 595 |
+
buffer = source.read(8192)
|
| 596 |
+
if not buffer:
|
| 597 |
+
break
|
| 598 |
+
|
| 599 |
+
output.write(buffer)
|
| 600 |
+
loop.update(len(buffer))
|
| 601 |
+
|
| 602 |
+
if expected_sha256 and not hashlib.sha256(open(download_target, "rb").read()).hexdigest().startswith(expected_sha256):
|
| 603 |
+
raise RuntimeError(f"Model has been downloaded but the SHA256 checksum does not not match")
|
| 604 |
+
|
| 605 |
+
return download_target
|
| 606 |
+
|
| 607 |
+
|
| 608 |
+
def has_hf_hub(necessary=False):
|
| 609 |
+
if not _has_hf_hub and necessary:
|
| 610 |
+
# if no HF Hub module installed, and it is necessary to continue, raise error
|
| 611 |
+
raise RuntimeError(
|
| 612 |
+
'Hugging Face hub model specified but package not installed. Run `pip install huggingface_hub`.')
|
| 613 |
+
return _has_hf_hub
|
| 614 |
+
|
| 615 |
+
|
| 616 |
+
def download_pretrained_from_hf(
|
| 617 |
+
model_id: str,
|
| 618 |
+
filename: str = 'open_clip_pytorch_model.bin',
|
| 619 |
+
revision=None,
|
| 620 |
+
cache_dir: Union[str, None] = None,
|
| 621 |
+
):
|
| 622 |
+
has_hf_hub(True)
|
| 623 |
+
cached_file = hf_hub_download(model_id, filename, revision=revision, cache_dir=cache_dir)
|
| 624 |
+
return cached_file
|
| 625 |
+
|
| 626 |
+
|
| 627 |
+
def download_pretrained(
|
| 628 |
+
cfg: Dict,
|
| 629 |
+
force_hf_hub: bool = False,
|
| 630 |
+
cache_dir: Union[str, None] = None,
|
| 631 |
+
):
|
| 632 |
+
target = ''
|
| 633 |
+
if not cfg:
|
| 634 |
+
return target
|
| 635 |
+
|
| 636 |
+
download_url = cfg.get('url', '')
|
| 637 |
+
download_hf_hub = cfg.get('hf_hub', '')
|
| 638 |
+
if download_hf_hub and force_hf_hub:
|
| 639 |
+
# use HF hub even if url exists
|
| 640 |
+
download_url = ''
|
| 641 |
+
|
| 642 |
+
if download_url:
|
| 643 |
+
target = download_pretrained_from_url(download_url, cache_dir=cache_dir)
|
| 644 |
+
elif download_hf_hub:
|
| 645 |
+
has_hf_hub(True)
|
| 646 |
+
# we assume the hf_hub entries in pretrained config combine model_id + filename in
|
| 647 |
+
# 'org/model_name/filename.pt' form. To specify just the model id w/o filename and
|
| 648 |
+
# use 'open_clip_pytorch_model.bin' default, there must be a trailing slash 'org/model_name/'.
|
| 649 |
+
model_id, filename = os.path.split(download_hf_hub)
|
| 650 |
+
if filename:
|
| 651 |
+
target = download_pretrained_from_hf(model_id, filename=filename, cache_dir=cache_dir)
|
| 652 |
+
else:
|
| 653 |
+
target = download_pretrained_from_hf(model_id, cache_dir=cache_dir)
|
| 654 |
+
|
| 655 |
+
return target
|
src/open_clip/timm_model.py
ADDED
|
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
""" timm model adapter
|
| 2 |
+
|
| 3 |
+
Wraps timm (https://github.com/rwightman/pytorch-image-models) models for use as a vision tower in CLIP model.
|
| 4 |
+
"""
|
| 5 |
+
import logging
|
| 6 |
+
from collections import OrderedDict
|
| 7 |
+
|
| 8 |
+
import torch
|
| 9 |
+
import torch.nn as nn
|
| 10 |
+
|
| 11 |
+
try:
|
| 12 |
+
import timm
|
| 13 |
+
from timm.models.layers import Mlp, to_2tuple
|
| 14 |
+
try:
|
| 15 |
+
# old timm imports < 0.8.1
|
| 16 |
+
from timm.models.layers.attention_pool2d import RotAttentionPool2d
|
| 17 |
+
from timm.models.layers.attention_pool2d import AttentionPool2d as AbsAttentionPool2d
|
| 18 |
+
except ImportError:
|
| 19 |
+
# new timm imports >= 0.8.1
|
| 20 |
+
from timm.layers import RotAttentionPool2d
|
| 21 |
+
from timm.layers import AttentionPool2d as AbsAttentionPool2d
|
| 22 |
+
except ImportError:
|
| 23 |
+
timm = None
|
| 24 |
+
|
| 25 |
+
from .utils import freeze_batch_norm_2d
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
class TimmModel(nn.Module):
|
| 29 |
+
""" timm model adapter
|
| 30 |
+
"""
|
| 31 |
+
|
| 32 |
+
def __init__(
|
| 33 |
+
self,
|
| 34 |
+
model_name,
|
| 35 |
+
embed_dim,
|
| 36 |
+
image_size=224,
|
| 37 |
+
pool='avg',
|
| 38 |
+
proj='linear',
|
| 39 |
+
proj_bias=False,
|
| 40 |
+
drop=0.,
|
| 41 |
+
drop_path=None,
|
| 42 |
+
patch_drop=None,
|
| 43 |
+
pretrained=False,
|
| 44 |
+
):
|
| 45 |
+
super().__init__()
|
| 46 |
+
if timm is None:
|
| 47 |
+
raise RuntimeError("Please `pip install timm` to use timm models.")
|
| 48 |
+
self.image_size = to_2tuple(image_size)
|
| 49 |
+
|
| 50 |
+
# setup kwargs that may not be common across all models
|
| 51 |
+
timm_kwargs = {}
|
| 52 |
+
if drop_path is not None:
|
| 53 |
+
timm_kwargs['drop_path_rate'] = drop_path
|
| 54 |
+
if patch_drop is not None:
|
| 55 |
+
timm_kwargs['patch_drop_rate'] = patch_drop
|
| 56 |
+
|
| 57 |
+
custom_pool = pool in ('abs_attn', 'rot_attn')
|
| 58 |
+
if proj:
|
| 59 |
+
assert proj in ("linear", "mlp", "none")
|
| 60 |
+
extra_proj = proj in ("linear", "mlp")
|
| 61 |
+
if not extra_proj and not custom_pool:
|
| 62 |
+
# use network classifier head as projection if no proj specified and no custom pooling used
|
| 63 |
+
# if projection is explicitly set to "none" will be pass through from network trunk
|
| 64 |
+
proj_dim = 0 if proj == 'none' else embed_dim
|
| 65 |
+
self.trunk = timm.create_model(
|
| 66 |
+
model_name,
|
| 67 |
+
num_classes=proj_dim,
|
| 68 |
+
global_pool=pool,
|
| 69 |
+
pretrained=pretrained,
|
| 70 |
+
**timm_kwargs,
|
| 71 |
+
)
|
| 72 |
+
prev_chs = embed_dim
|
| 73 |
+
else:
|
| 74 |
+
self.trunk = timm.create_model(
|
| 75 |
+
model_name,
|
| 76 |
+
pretrained=pretrained,
|
| 77 |
+
**timm_kwargs,
|
| 78 |
+
)
|
| 79 |
+
feat_size = self.trunk.default_cfg.get('pool_size', None)
|
| 80 |
+
feature_ndim = 1 if not feat_size else 2
|
| 81 |
+
if custom_pool:
|
| 82 |
+
assert feature_ndim == 2
|
| 83 |
+
# if attn pooling used, remove both classifier and default pool
|
| 84 |
+
self.trunk.reset_classifier(0, global_pool='')
|
| 85 |
+
else:
|
| 86 |
+
# reset global pool if pool config set, otherwise leave as network default
|
| 87 |
+
reset_kwargs = dict(global_pool=pool) if pool else {}
|
| 88 |
+
self.trunk.reset_classifier(0, **reset_kwargs)
|
| 89 |
+
prev_chs = self.trunk.num_features
|
| 90 |
+
|
| 91 |
+
head_layers = OrderedDict()
|
| 92 |
+
|
| 93 |
+
# Add custom pooling to head
|
| 94 |
+
if pool == 'abs_attn':
|
| 95 |
+
head_layers['pool'] = AbsAttentionPool2d(prev_chs, feat_size=feat_size, out_features=embed_dim)
|
| 96 |
+
prev_chs = embed_dim
|
| 97 |
+
elif pool == 'rot_attn':
|
| 98 |
+
head_layers['pool'] = RotAttentionPool2d(prev_chs, out_features=embed_dim)
|
| 99 |
+
prev_chs = embed_dim
|
| 100 |
+
|
| 101 |
+
# NOTE attention pool ends with a projection layer, so proj should usually be set to '' if such pooling is used
|
| 102 |
+
if proj == 'linear':
|
| 103 |
+
head_layers['drop'] = nn.Dropout(drop)
|
| 104 |
+
head_layers['proj'] = nn.Linear(prev_chs, embed_dim, bias=proj_bias)
|
| 105 |
+
elif proj == 'mlp':
|
| 106 |
+
head_layers['mlp'] = Mlp(prev_chs, 2 * embed_dim, embed_dim, drop=(drop, 0), bias=(True, proj_bias))
|
| 107 |
+
|
| 108 |
+
self.head = nn.Sequential(head_layers)
|
| 109 |
+
|
| 110 |
+
def lock(self, unlocked_groups=0, freeze_bn_stats=False):
|
| 111 |
+
""" lock modules
|
| 112 |
+
Args:
|
| 113 |
+
unlocked_groups (int): leave last n layer groups unlocked (default: 0)
|
| 114 |
+
"""
|
| 115 |
+
if not unlocked_groups:
|
| 116 |
+
# lock full model
|
| 117 |
+
for param in self.trunk.parameters():
|
| 118 |
+
param.requires_grad = False
|
| 119 |
+
if freeze_bn_stats:
|
| 120 |
+
freeze_batch_norm_2d(self.trunk)
|
| 121 |
+
else:
|
| 122 |
+
# NOTE: partial freeze requires latest timm (master) branch and is subject to change
|
| 123 |
+
try:
|
| 124 |
+
# FIXME import here until API stable and in an official release
|
| 125 |
+
from timm.models.helpers import group_parameters, group_modules
|
| 126 |
+
except ImportError:
|
| 127 |
+
raise RuntimeError(
|
| 128 |
+
'Please install latest timm `pip install git+https://github.com/rwightman/pytorch-image-models`')
|
| 129 |
+
matcher = self.trunk.group_matcher()
|
| 130 |
+
gparams = group_parameters(self.trunk, matcher)
|
| 131 |
+
max_layer_id = max(gparams.keys())
|
| 132 |
+
max_layer_id = max_layer_id - unlocked_groups
|
| 133 |
+
for group_idx in range(max_layer_id + 1):
|
| 134 |
+
group = gparams[group_idx]
|
| 135 |
+
for param in group:
|
| 136 |
+
self.trunk.get_parameter(param).requires_grad = False
|
| 137 |
+
if freeze_bn_stats:
|
| 138 |
+
gmodules = group_modules(self.trunk, matcher, reverse=True)
|
| 139 |
+
gmodules = {k for k, v in gmodules.items() if v <= max_layer_id}
|
| 140 |
+
freeze_batch_norm_2d(self.trunk, gmodules)
|
| 141 |
+
|
| 142 |
+
@torch.jit.ignore
|
| 143 |
+
def set_grad_checkpointing(self, enable=True):
|
| 144 |
+
try:
|
| 145 |
+
self.trunk.set_grad_checkpointing(enable)
|
| 146 |
+
except Exception as e:
|
| 147 |
+
logging.warning('grad checkpointing not supported for this timm image tower, continuing without...')
|
| 148 |
+
|
| 149 |
+
def forward(self, x):
|
| 150 |
+
x = self.trunk(x)
|
| 151 |
+
x = self.head(x)
|
| 152 |
+
return x
|
src/open_clip/tokenizer.py
ADDED
|
@@ -0,0 +1,517 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
""" CLIP tokenizer
|
| 2 |
+
|
| 3 |
+
Copied from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
|
| 4 |
+
"""
|
| 5 |
+
import gzip
|
| 6 |
+
import html
|
| 7 |
+
import os
|
| 8 |
+
import random
|
| 9 |
+
import string
|
| 10 |
+
from functools import lru_cache, partial
|
| 11 |
+
from typing import Callable, List, Optional, Union
|
| 12 |
+
import warnings
|
| 13 |
+
|
| 14 |
+
import ftfy
|
| 15 |
+
import numpy as np
|
| 16 |
+
import regex as re
|
| 17 |
+
import torch
|
| 18 |
+
|
| 19 |
+
# https://stackoverflow.com/q/62691279
|
| 20 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 21 |
+
_nltk_init = False
|
| 22 |
+
|
| 23 |
+
DEFAULT_CONTEXT_LENGTH = 77 # default context length for OpenAI CLIP
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
@lru_cache()
|
| 27 |
+
def default_bpe():
|
| 28 |
+
return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz")
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
@lru_cache()
|
| 32 |
+
def bytes_to_unicode():
|
| 33 |
+
"""
|
| 34 |
+
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
| 35 |
+
The reversible bpe codes work on unicode strings.
|
| 36 |
+
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
| 37 |
+
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
| 38 |
+
This is a significant percentage of your normal, say, 32K bpe vocab.
|
| 39 |
+
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
| 40 |
+
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
| 41 |
+
"""
|
| 42 |
+
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
|
| 43 |
+
cs = bs[:]
|
| 44 |
+
n = 0
|
| 45 |
+
for b in range(2**8):
|
| 46 |
+
if b not in bs:
|
| 47 |
+
bs.append(b)
|
| 48 |
+
cs.append(2**8+n)
|
| 49 |
+
n += 1
|
| 50 |
+
cs = [chr(n) for n in cs]
|
| 51 |
+
return dict(zip(bs, cs))
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def get_pairs(word):
|
| 55 |
+
"""Return set of symbol pairs in a word.
|
| 56 |
+
Word is represented as tuple of symbols (symbols being variable-length strings).
|
| 57 |
+
"""
|
| 58 |
+
pairs = set()
|
| 59 |
+
prev_char = word[0]
|
| 60 |
+
for char in word[1:]:
|
| 61 |
+
pairs.add((prev_char, char))
|
| 62 |
+
prev_char = char
|
| 63 |
+
return pairs
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def basic_clean(text):
|
| 67 |
+
text = ftfy.fix_text(text)
|
| 68 |
+
text = html.unescape(html.unescape(text))
|
| 69 |
+
return text.strip()
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def whitespace_clean(text):
|
| 73 |
+
text = " ".join(text.split())
|
| 74 |
+
text = text.strip()
|
| 75 |
+
return text
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def _clean_canonicalize(x):
|
| 79 |
+
# basic, remove whitespace, remove punctuation, lower case
|
| 80 |
+
return canonicalize_text(basic_clean(x))
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def _clean_lower(x):
|
| 84 |
+
# basic, remove whitespace, lower case
|
| 85 |
+
return whitespace_clean(basic_clean(x)).lower()
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
def _clean_whitespace(x):
|
| 89 |
+
# basic, remove whitespace
|
| 90 |
+
return whitespace_clean(basic_clean(x))
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def get_clean_fn(type: str):
|
| 94 |
+
if type == 'canonicalize':
|
| 95 |
+
return _clean_canonicalize
|
| 96 |
+
elif type == 'lower':
|
| 97 |
+
return _clean_lower
|
| 98 |
+
elif type == 'whitespace':
|
| 99 |
+
return _clean_whitespace
|
| 100 |
+
else:
|
| 101 |
+
assert False, f"Invalid clean function ({type})."
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
def canonicalize_text(
|
| 105 |
+
text,
|
| 106 |
+
*,
|
| 107 |
+
keep_punctuation_exact_string=None,
|
| 108 |
+
trans_punctuation: dict = str.maketrans("", "", string.punctuation),
|
| 109 |
+
):
|
| 110 |
+
"""Returns canonicalized `text` (lowercase and punctuation removed).
|
| 111 |
+
|
| 112 |
+
From: https://github.com/google-research/big_vision/blob/53f18caf27a9419231bbf08d3388b07671616d3d/big_vision/evaluators/proj/image_text/prompt_engineering.py#L94
|
| 113 |
+
|
| 114 |
+
Args:
|
| 115 |
+
text: string to be canonicalized.
|
| 116 |
+
keep_punctuation_exact_string: If provided, then this exact string kept.
|
| 117 |
+
For example providing '{}' will keep any occurrences of '{}' (but will
|
| 118 |
+
still remove '{' and '}' that appear separately).
|
| 119 |
+
"""
|
| 120 |
+
text = text.replace("_", " ")
|
| 121 |
+
if keep_punctuation_exact_string:
|
| 122 |
+
text = keep_punctuation_exact_string.join(
|
| 123 |
+
part.translate(trans_punctuation)
|
| 124 |
+
for part in text.split(keep_punctuation_exact_string)
|
| 125 |
+
)
|
| 126 |
+
else:
|
| 127 |
+
text = text.translate(trans_punctuation)
|
| 128 |
+
text = text.lower()
|
| 129 |
+
text = " ".join(text.split())
|
| 130 |
+
return text.strip()
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
class SimpleTokenizer(object):
|
| 134 |
+
def __init__(
|
| 135 |
+
self,
|
| 136 |
+
bpe_path: str = default_bpe(),
|
| 137 |
+
additional_special_tokens: Optional[List[str]] = None,
|
| 138 |
+
context_length: Optional[int] = DEFAULT_CONTEXT_LENGTH,
|
| 139 |
+
clean: str = 'lower',
|
| 140 |
+
reduction_mask: str = ''
|
| 141 |
+
):
|
| 142 |
+
self.byte_encoder = bytes_to_unicode()
|
| 143 |
+
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
| 144 |
+
merges = gzip.open(bpe_path).read().decode("utf-8").split('\n')
|
| 145 |
+
merges = merges[1:49152-256-2+1]
|
| 146 |
+
merges = [tuple(merge.split()) for merge in merges]
|
| 147 |
+
vocab = list(bytes_to_unicode().values())
|
| 148 |
+
vocab = vocab + [v+'</w>' for v in vocab]
|
| 149 |
+
for merge in merges:
|
| 150 |
+
vocab.append(''.join(merge))
|
| 151 |
+
special_tokens = ['<start_of_text>', '<end_of_text>']
|
| 152 |
+
if additional_special_tokens:
|
| 153 |
+
special_tokens += additional_special_tokens
|
| 154 |
+
vocab.extend(special_tokens)
|
| 155 |
+
self.encoder = dict(zip(vocab, range(len(vocab))))
|
| 156 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
| 157 |
+
self.bpe_ranks = dict(zip(merges, range(len(merges))))
|
| 158 |
+
self.cache = {t:t for t in special_tokens}
|
| 159 |
+
special = "|".join(special_tokens)
|
| 160 |
+
self.pat = re.compile(
|
| 161 |
+
special + r"""|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""",
|
| 162 |
+
re.IGNORECASE,
|
| 163 |
+
)
|
| 164 |
+
self.vocab_size = len(self.encoder)
|
| 165 |
+
self.all_special_ids = [self.encoder[t] for t in special_tokens]
|
| 166 |
+
self.sot_token_id = self.all_special_ids[0]
|
| 167 |
+
self.eot_token_id = self.all_special_ids[1]
|
| 168 |
+
self.context_length = context_length
|
| 169 |
+
self.clean_fn = get_clean_fn(clean)
|
| 170 |
+
self.reduction_fn = get_reduction_mask_fn(reduction_mask) if reduction_mask else None
|
| 171 |
+
|
| 172 |
+
def bpe(self, token):
|
| 173 |
+
if token in self.cache:
|
| 174 |
+
return self.cache[token]
|
| 175 |
+
word = tuple(token[:-1]) + ( token[-1] + '</w>',)
|
| 176 |
+
pairs = get_pairs(word)
|
| 177 |
+
|
| 178 |
+
if not pairs:
|
| 179 |
+
return token+'</w>'
|
| 180 |
+
|
| 181 |
+
while True:
|
| 182 |
+
bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
|
| 183 |
+
if bigram not in self.bpe_ranks:
|
| 184 |
+
break
|
| 185 |
+
first, second = bigram
|
| 186 |
+
new_word = []
|
| 187 |
+
i = 0
|
| 188 |
+
while i < len(word):
|
| 189 |
+
try:
|
| 190 |
+
j = word.index(first, i)
|
| 191 |
+
new_word.extend(word[i:j])
|
| 192 |
+
i = j
|
| 193 |
+
except Exception:
|
| 194 |
+
new_word.extend(word[i:])
|
| 195 |
+
break
|
| 196 |
+
|
| 197 |
+
if word[i] == first and i < len(word)-1 and word[i+1] == second:
|
| 198 |
+
new_word.append(first+second)
|
| 199 |
+
i += 2
|
| 200 |
+
else:
|
| 201 |
+
new_word.append(word[i])
|
| 202 |
+
i += 1
|
| 203 |
+
new_word = tuple(new_word)
|
| 204 |
+
word = new_word
|
| 205 |
+
if len(word) == 1:
|
| 206 |
+
break
|
| 207 |
+
else:
|
| 208 |
+
pairs = get_pairs(word)
|
| 209 |
+
word = ' '.join(word)
|
| 210 |
+
self.cache[token] = word
|
| 211 |
+
return word
|
| 212 |
+
|
| 213 |
+
def encode(self, text):
|
| 214 |
+
bpe_tokens = []
|
| 215 |
+
text = self.clean_fn(text)
|
| 216 |
+
for token in re.findall(self.pat, text):
|
| 217 |
+
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
|
| 218 |
+
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
|
| 219 |
+
return bpe_tokens
|
| 220 |
+
|
| 221 |
+
def decode(self, tokens):
|
| 222 |
+
text = ''.join([self.decoder[token] for token in tokens])
|
| 223 |
+
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ')
|
| 224 |
+
return text
|
| 225 |
+
|
| 226 |
+
def __call__(self, texts: Union[str, List[str]], context_length: Optional[int] = None) -> torch.LongTensor:
|
| 227 |
+
""" Returns the tokenized representation of given input string(s)
|
| 228 |
+
|
| 229 |
+
Parameters
|
| 230 |
+
----------
|
| 231 |
+
texts : Union[str, List[str]]
|
| 232 |
+
An input string or a list of input strings to tokenize
|
| 233 |
+
context_length : int
|
| 234 |
+
The context length to use; all CLIP models use 77 as the context length
|
| 235 |
+
|
| 236 |
+
Returns
|
| 237 |
+
-------
|
| 238 |
+
A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length]
|
| 239 |
+
"""
|
| 240 |
+
if isinstance(texts, str):
|
| 241 |
+
texts = [texts]
|
| 242 |
+
|
| 243 |
+
context_length = context_length or self.context_length
|
| 244 |
+
assert context_length, 'Please set a valid context length'
|
| 245 |
+
|
| 246 |
+
if self.reduction_fn is not None:
|
| 247 |
+
# use reduction strategy for tokenize if set, otherwise default to truncation below
|
| 248 |
+
return self.reduction_fn(
|
| 249 |
+
texts,
|
| 250 |
+
context_length=context_length,
|
| 251 |
+
sot_token_id=self.sot_token_id,
|
| 252 |
+
eot_token_id=self.eot_token_id,
|
| 253 |
+
encode_fn=self.encode,
|
| 254 |
+
)
|
| 255 |
+
|
| 256 |
+
all_tokens = [[self.sot_token_id] + self.encode(text) + [self.eot_token_id] for text in texts]
|
| 257 |
+
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
|
| 258 |
+
|
| 259 |
+
for i, tokens in enumerate(all_tokens):
|
| 260 |
+
if len(tokens) > context_length:
|
| 261 |
+
tokens = tokens[:context_length] # Truncate
|
| 262 |
+
tokens[-1] = self.eot_token_id
|
| 263 |
+
result[i, :len(tokens)] = torch.tensor(tokens)
|
| 264 |
+
|
| 265 |
+
return result
|
| 266 |
+
|
| 267 |
+
|
| 268 |
+
_tokenizer = SimpleTokenizer()
|
| 269 |
+
|
| 270 |
+
|
| 271 |
+
def decode(output_ids: torch.Tensor):
|
| 272 |
+
output_ids = output_ids.cpu().numpy()
|
| 273 |
+
return _tokenizer.decode(output_ids)
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
def tokenize(texts: Union[str, List[str]], context_length: int = DEFAULT_CONTEXT_LENGTH) -> torch.LongTensor:
|
| 277 |
+
return _tokenizer(texts, context_length=context_length)
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
def random_mask_tokenize(
|
| 281 |
+
texts: Union[str, List[str]],
|
| 282 |
+
context_length: int,
|
| 283 |
+
sot_token_id: int,
|
| 284 |
+
eot_token_id: int,
|
| 285 |
+
encode_fn: Callable,
|
| 286 |
+
shuffle: bool = False,
|
| 287 |
+
):
|
| 288 |
+
all_tokens = [encode_fn(text) for text in texts]
|
| 289 |
+
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
|
| 290 |
+
|
| 291 |
+
for i, tokens in enumerate(all_tokens):
|
| 292 |
+
tokens = torch.tensor(tokens)
|
| 293 |
+
num_tokens = len(tokens)
|
| 294 |
+
if num_tokens > context_length - 2: # 2 for sot and eot token
|
| 295 |
+
num_keep = context_length - 2
|
| 296 |
+
indices = torch.randperm(len(tokens))
|
| 297 |
+
indices = indices[:num_keep]
|
| 298 |
+
if not shuffle:
|
| 299 |
+
indices = indices.msort()
|
| 300 |
+
tokens = tokens[indices]
|
| 301 |
+
num_tokens = num_keep
|
| 302 |
+
result[i, 0] = sot_token_id
|
| 303 |
+
result[i, 1:num_tokens + 1] = tokens
|
| 304 |
+
result[i, num_tokens + 1] = eot_token_id
|
| 305 |
+
|
| 306 |
+
return result
|
| 307 |
+
|
| 308 |
+
|
| 309 |
+
def simple_mask_tokenize(
|
| 310 |
+
texts: Union[str, List[str]],
|
| 311 |
+
context_length: int,
|
| 312 |
+
sot_token_id: int,
|
| 313 |
+
eot_token_id: int,
|
| 314 |
+
encode_fn: Callable,
|
| 315 |
+
):
|
| 316 |
+
all_tokens = [encode_fn(text) for text in texts]
|
| 317 |
+
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
|
| 318 |
+
|
| 319 |
+
for i, tokens in enumerate(all_tokens):
|
| 320 |
+
num_tokens = len(tokens)
|
| 321 |
+
if num_tokens > context_length - 2: # 2 for sot and eot token
|
| 322 |
+
num_keep = context_length - 2
|
| 323 |
+
start_index = random.randint(0, num_tokens - num_keep) # high is incl
|
| 324 |
+
tokens = tokens[start_index: start_index + num_keep]
|
| 325 |
+
tokens = [sot_token_id] + tokens + [eot_token_id]
|
| 326 |
+
result[i, :len(tokens)] = torch.tensor(tokens)
|
| 327 |
+
|
| 328 |
+
return result
|
| 329 |
+
|
| 330 |
+
|
| 331 |
+
def syntax_mask_tokenize(
|
| 332 |
+
texts: Union[str, List[str]],
|
| 333 |
+
context_length: int,
|
| 334 |
+
sot_token_id: int,
|
| 335 |
+
eot_token_id: int,
|
| 336 |
+
encode_fn: Callable,
|
| 337 |
+
) -> torch.LongTensor:
|
| 338 |
+
""" Returns the tokenized representation of given input string(s).
|
| 339 |
+
Apply syntax masking before tokenize.
|
| 340 |
+
"""
|
| 341 |
+
import nltk
|
| 342 |
+
global _nltk_init
|
| 343 |
+
if not _nltk_init:
|
| 344 |
+
# run them for the first time
|
| 345 |
+
nltk.download('punkt')
|
| 346 |
+
nltk.download('averaged_perceptron_tagger')
|
| 347 |
+
_nltk_init = True
|
| 348 |
+
|
| 349 |
+
def get_order(x):
|
| 350 |
+
if x.startswith('NN'):
|
| 351 |
+
return 1
|
| 352 |
+
elif x.startswith('JJ'):
|
| 353 |
+
return 2
|
| 354 |
+
elif x.startswith('VB'):
|
| 355 |
+
return 3
|
| 356 |
+
else:
|
| 357 |
+
return 4
|
| 358 |
+
|
| 359 |
+
# syntax masking
|
| 360 |
+
new_texts = []
|
| 361 |
+
for text in texts:
|
| 362 |
+
list_tokens = nltk.tokenize.word_tokenize(text)
|
| 363 |
+
pos_tags = nltk.pos_tag(list_tokens)
|
| 364 |
+
# sample the words by get_order method
|
| 365 |
+
order_list = [get_order(tag) for _, tag in pos_tags]
|
| 366 |
+
sorted_ids = np.argsort(np.array(order_list))
|
| 367 |
+
sampled_ids = sorted(sorted_ids[:context_length - 2]) # need 2 slots for sot and eot tokens
|
| 368 |
+
sampled_tokens = np.take(np.array(list_tokens), sampled_ids, axis=0) # sample the tokens
|
| 369 |
+
|
| 370 |
+
new_text = ''
|
| 371 |
+
for token in sampled_tokens:
|
| 372 |
+
new_text = new_text + str(token) + ' '
|
| 373 |
+
new_text = new_text.strip()
|
| 374 |
+
new_texts.append(new_text)
|
| 375 |
+
texts = new_texts
|
| 376 |
+
|
| 377 |
+
all_tokens = [[sot_token_id] + encode_fn(text) + [eot_token_id] for text in texts]
|
| 378 |
+
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
|
| 379 |
+
|
| 380 |
+
for i, tokens in enumerate(all_tokens):
|
| 381 |
+
# still need first truncate because some words produces two tokens
|
| 382 |
+
if len(tokens) > context_length:
|
| 383 |
+
tokens = tokens[:context_length] # Truncate
|
| 384 |
+
tokens[-1] = eot_token_id
|
| 385 |
+
result[i, :len(tokens)] = torch.tensor(tokens)
|
| 386 |
+
|
| 387 |
+
return result
|
| 388 |
+
|
| 389 |
+
|
| 390 |
+
def get_reduction_mask_fn(type: str):
|
| 391 |
+
""" Choose strategy for dropping (masking) tokens to achieve target context length"""
|
| 392 |
+
assert type in ('simple', 'random', 'shuffle', 'syntax')
|
| 393 |
+
if type == 'simple':
|
| 394 |
+
return simple_mask_tokenize # randomly select block [start:end]
|
| 395 |
+
elif type == 'random':
|
| 396 |
+
return random_mask_tokenize # randomly drop tokens (keep order)
|
| 397 |
+
elif type == 'shuffle':
|
| 398 |
+
return partial(random_mask_tokenize, shuffle=True) # randomly drop tokens (shuffle order)
|
| 399 |
+
elif type == 'syntax':
|
| 400 |
+
return syntax_mask_tokenize # randomly drop prioritized by syntax
|
| 401 |
+
|
| 402 |
+
|
| 403 |
+
class HFTokenizer:
|
| 404 |
+
"""HuggingFace tokenizer wrapper"""
|
| 405 |
+
|
| 406 |
+
def __init__(
|
| 407 |
+
self,
|
| 408 |
+
tokenizer_name: str,
|
| 409 |
+
context_length: Optional[int] = DEFAULT_CONTEXT_LENGTH,
|
| 410 |
+
clean: str = 'whitespace',
|
| 411 |
+
strip_sep_token: bool = False,
|
| 412 |
+
language: Optional[str] = None,
|
| 413 |
+
**kwargs
|
| 414 |
+
):
|
| 415 |
+
from transformers import AutoTokenizer
|
| 416 |
+
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, **kwargs)
|
| 417 |
+
set_lang_fn = getattr(self.tokenizer, 'set_src_lang_special_tokens', None)
|
| 418 |
+
if callable(set_lang_fn):
|
| 419 |
+
self.set_lang_fn = set_lang_fn
|
| 420 |
+
if language is not None:
|
| 421 |
+
self.set_language(language)
|
| 422 |
+
self.context_length = context_length
|
| 423 |
+
self.clean_fn = get_clean_fn(clean)
|
| 424 |
+
self.strip_sep_token = strip_sep_token
|
| 425 |
+
|
| 426 |
+
def save_pretrained(self, dest):
|
| 427 |
+
self.tokenizer.save_pretrained(dest)
|
| 428 |
+
|
| 429 |
+
def __call__(self, texts: Union[str, List[str]], context_length: Optional[int] = None) -> torch.Tensor:
|
| 430 |
+
# same cleaning as for default tokenizer, except lowercasing
|
| 431 |
+
# adding lower (for case-sensitive tokenizers) will make it more robust but less sensitive to nuance
|
| 432 |
+
if isinstance(texts, str):
|
| 433 |
+
texts = [texts]
|
| 434 |
+
|
| 435 |
+
context_length = context_length or self.context_length
|
| 436 |
+
assert context_length, 'Please set a valid context length in class init or call.'
|
| 437 |
+
|
| 438 |
+
texts = [self.clean_fn(text) for text in texts]
|
| 439 |
+
input_ids = self.tokenizer.batch_encode_plus(
|
| 440 |
+
texts,
|
| 441 |
+
return_tensors='pt',
|
| 442 |
+
max_length=context_length,
|
| 443 |
+
padding='max_length',
|
| 444 |
+
truncation=True,
|
| 445 |
+
).input_ids
|
| 446 |
+
|
| 447 |
+
if self.strip_sep_token:
|
| 448 |
+
input_ids = torch.where(
|
| 449 |
+
input_ids == self.tokenizer.sep_token_id,
|
| 450 |
+
torch.zeros_like(input_ids),
|
| 451 |
+
input_ids,
|
| 452 |
+
)
|
| 453 |
+
|
| 454 |
+
return input_ids
|
| 455 |
+
|
| 456 |
+
def set_language(self, src_lang):
|
| 457 |
+
if hasattr(self, 'set_lang_fn'):
|
| 458 |
+
self.set_lang_fn(src_lang)
|
| 459 |
+
else:
|
| 460 |
+
warnings.warn('Cannot set language for the tokenizer.')
|
| 461 |
+
|
| 462 |
+
|
| 463 |
+
class SigLipTokenizer:
|
| 464 |
+
"""HuggingFace tokenizer wrapper for SigLIP T5 compatible sentencepiece vocabs
|
| 465 |
+
"""
|
| 466 |
+
VOCAB_FILES = {
|
| 467 |
+
# english, vocab_size=32_000
|
| 468 |
+
"c4-en": "http://storage.googleapis.com/t5-data/vocabs/cc_en.32000/sentencepiece.model",
|
| 469 |
+
# used in multilingual models (mT5, PaLI), vocab_size=250_000
|
| 470 |
+
"mc4": "http://storage.googleapis.com/t5-data/vocabs/mc4.250000.100extra/sentencepiece.model",
|
| 471 |
+
}
|
| 472 |
+
|
| 473 |
+
def __init__(
|
| 474 |
+
self,
|
| 475 |
+
tokenizer_name: str,
|
| 476 |
+
context_length: Optional[int] = 64,
|
| 477 |
+
):
|
| 478 |
+
from transformers import T5TokenizerFast
|
| 479 |
+
|
| 480 |
+
if tokenizer_name in self.VOCAB_FILES:
|
| 481 |
+
# FIXME temporary hack?
|
| 482 |
+
import tempfile
|
| 483 |
+
|
| 484 |
+
import fsspec
|
| 485 |
+
vocab_file = self.VOCAB_FILES[tokenizer_name]
|
| 486 |
+
with tempfile.NamedTemporaryFile('wb') as dst:
|
| 487 |
+
with fsspec.open(vocab_file, 'rb') as src:
|
| 488 |
+
dst.write(src.read())
|
| 489 |
+
self.tokenizer = T5TokenizerFast(dst.name, legacy=False)
|
| 490 |
+
else:
|
| 491 |
+
self.tokenizer = T5TokenizerFast(tokenizer_name, legacy=False)
|
| 492 |
+
|
| 493 |
+
self.tokenizer.pad_token_id = 1
|
| 494 |
+
self.tokenizer.eos_token_id = 1
|
| 495 |
+
self.context_length = context_length
|
| 496 |
+
|
| 497 |
+
def save_pretrained(self, dest):
|
| 498 |
+
self.tokenizer.save_pretrained(dest)
|
| 499 |
+
|
| 500 |
+
def __call__(self, texts: Union[str, List[str]], context_length: Optional[int] = None) -> torch.Tensor:
|
| 501 |
+
# same cleaning as for default tokenizer, except lowercasing
|
| 502 |
+
# adding lower (for case-sensitive tokenizers) will make it more robust but less sensitive to nuance
|
| 503 |
+
if isinstance(texts, str):
|
| 504 |
+
texts = [texts]
|
| 505 |
+
|
| 506 |
+
context_length = context_length or self.context_length
|
| 507 |
+
assert context_length, 'Please set a valid context length in class init or call.'
|
| 508 |
+
|
| 509 |
+
texts = [canonicalize_text(basic_clean(text)) for text in texts]
|
| 510 |
+
output = self.tokenizer(
|
| 511 |
+
texts,
|
| 512 |
+
return_tensors='pt',
|
| 513 |
+
max_length=context_length,
|
| 514 |
+
padding='max_length',
|
| 515 |
+
truncation=True,
|
| 516 |
+
)
|
| 517 |
+
return output.input_ids
|
src/open_clip/transform.py
ADDED
|
@@ -0,0 +1,407 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numbers
|
| 2 |
+
import random
|
| 3 |
+
import warnings
|
| 4 |
+
from dataclasses import dataclass, asdict
|
| 5 |
+
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
import torchvision.transforms.functional as F
|
| 9 |
+
from torchvision.transforms import Normalize, Compose, RandomResizedCrop, InterpolationMode, ToTensor, Resize, \
|
| 10 |
+
CenterCrop, ColorJitter, Grayscale
|
| 11 |
+
|
| 12 |
+
from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
|
| 13 |
+
from .utils import to_2tuple
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
@dataclass
|
| 17 |
+
class PreprocessCfg:
|
| 18 |
+
size: Union[int, Tuple[int, int]] = 224
|
| 19 |
+
mode: str = 'RGB'
|
| 20 |
+
mean: Tuple[float, ...] = OPENAI_DATASET_MEAN
|
| 21 |
+
std: Tuple[float, ...] = OPENAI_DATASET_STD
|
| 22 |
+
interpolation: str = 'bicubic'
|
| 23 |
+
resize_mode: str = 'shortest'
|
| 24 |
+
fill_color: int = 0
|
| 25 |
+
|
| 26 |
+
def __post_init__(self):
|
| 27 |
+
assert self.mode in ('RGB',)
|
| 28 |
+
|
| 29 |
+
@property
|
| 30 |
+
def num_channels(self):
|
| 31 |
+
return 3
|
| 32 |
+
|
| 33 |
+
@property
|
| 34 |
+
def input_size(self):
|
| 35 |
+
return (self.num_channels,) + to_2tuple(self.size)
|
| 36 |
+
|
| 37 |
+
_PREPROCESS_KEYS = set(asdict(PreprocessCfg()).keys())
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def merge_preprocess_dict(
|
| 41 |
+
base: Union[PreprocessCfg, Dict],
|
| 42 |
+
overlay: Dict,
|
| 43 |
+
):
|
| 44 |
+
""" Merge overlay key-value pairs on top of base preprocess cfg or dict.
|
| 45 |
+
Input dicts are filtered based on PreprocessCfg fields.
|
| 46 |
+
"""
|
| 47 |
+
if isinstance(base, PreprocessCfg):
|
| 48 |
+
base_clean = asdict(base)
|
| 49 |
+
else:
|
| 50 |
+
base_clean = {k: v for k, v in base.items() if k in _PREPROCESS_KEYS}
|
| 51 |
+
if overlay:
|
| 52 |
+
overlay_clean = {k: v for k, v in overlay.items() if k in _PREPROCESS_KEYS and v is not None}
|
| 53 |
+
base_clean.update(overlay_clean)
|
| 54 |
+
return base_clean
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def merge_preprocess_kwargs(base: PreprocessCfg, **kwargs):
|
| 58 |
+
return merge_preprocess_dict(base, kwargs)
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
@dataclass
|
| 62 |
+
class AugmentationCfg:
|
| 63 |
+
scale: Tuple[float, float] = (0.9, 1.0)
|
| 64 |
+
ratio: Optional[Tuple[float, float]] = None
|
| 65 |
+
color_jitter: Optional[Union[float, Tuple[float, float, float], Tuple[float, float, float, float]]] = None
|
| 66 |
+
re_prob: Optional[float] = None
|
| 67 |
+
re_count: Optional[int] = None
|
| 68 |
+
use_timm: bool = False
|
| 69 |
+
|
| 70 |
+
# params for simclr_jitter_gray
|
| 71 |
+
color_jitter_prob: float = None
|
| 72 |
+
gray_scale_prob: float = None
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def _setup_size(size, error_msg):
|
| 76 |
+
if isinstance(size, numbers.Number):
|
| 77 |
+
return int(size), int(size)
|
| 78 |
+
|
| 79 |
+
if isinstance(size, Sequence) and len(size) == 1:
|
| 80 |
+
return size[0], size[0]
|
| 81 |
+
|
| 82 |
+
if len(size) != 2:
|
| 83 |
+
raise ValueError(error_msg)
|
| 84 |
+
|
| 85 |
+
return size
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
class ResizeKeepRatio:
|
| 89 |
+
""" Resize and Keep Ratio
|
| 90 |
+
|
| 91 |
+
Copy & paste from `timm`
|
| 92 |
+
"""
|
| 93 |
+
|
| 94 |
+
def __init__(
|
| 95 |
+
self,
|
| 96 |
+
size,
|
| 97 |
+
longest=0.,
|
| 98 |
+
interpolation=InterpolationMode.BICUBIC,
|
| 99 |
+
random_scale_prob=0.,
|
| 100 |
+
random_scale_range=(0.85, 1.05),
|
| 101 |
+
random_aspect_prob=0.,
|
| 102 |
+
random_aspect_range=(0.9, 1.11)
|
| 103 |
+
):
|
| 104 |
+
if isinstance(size, (list, tuple)):
|
| 105 |
+
self.size = tuple(size)
|
| 106 |
+
else:
|
| 107 |
+
self.size = (size, size)
|
| 108 |
+
self.interpolation = interpolation
|
| 109 |
+
self.longest = float(longest) # [0, 1] where 0 == shortest edge, 1 == longest
|
| 110 |
+
self.random_scale_prob = random_scale_prob
|
| 111 |
+
self.random_scale_range = random_scale_range
|
| 112 |
+
self.random_aspect_prob = random_aspect_prob
|
| 113 |
+
self.random_aspect_range = random_aspect_range
|
| 114 |
+
|
| 115 |
+
@staticmethod
|
| 116 |
+
def get_params(
|
| 117 |
+
img,
|
| 118 |
+
target_size,
|
| 119 |
+
longest,
|
| 120 |
+
random_scale_prob=0.,
|
| 121 |
+
random_scale_range=(0.85, 1.05),
|
| 122 |
+
random_aspect_prob=0.,
|
| 123 |
+
random_aspect_range=(0.9, 1.11)
|
| 124 |
+
):
|
| 125 |
+
"""Get parameters
|
| 126 |
+
"""
|
| 127 |
+
source_size = img.size[::-1] # h, w
|
| 128 |
+
h, w = source_size
|
| 129 |
+
target_h, target_w = target_size
|
| 130 |
+
ratio_h = h / target_h
|
| 131 |
+
ratio_w = w / target_w
|
| 132 |
+
ratio = max(ratio_h, ratio_w) * longest + min(ratio_h, ratio_w) * (1. - longest)
|
| 133 |
+
if random_scale_prob > 0 and random.random() < random_scale_prob:
|
| 134 |
+
ratio_factor = random.uniform(random_scale_range[0], random_scale_range[1])
|
| 135 |
+
ratio_factor = (ratio_factor, ratio_factor)
|
| 136 |
+
else:
|
| 137 |
+
ratio_factor = (1., 1.)
|
| 138 |
+
if random_aspect_prob > 0 and random.random() < random_aspect_prob:
|
| 139 |
+
aspect_factor = random.uniform(random_aspect_range[0], random_aspect_range[1])
|
| 140 |
+
ratio_factor = (ratio_factor[0] / aspect_factor, ratio_factor[1] * aspect_factor)
|
| 141 |
+
size = [round(x * f / ratio) for x, f in zip(source_size, ratio_factor)]
|
| 142 |
+
return size
|
| 143 |
+
|
| 144 |
+
def __call__(self, img):
|
| 145 |
+
"""
|
| 146 |
+
Args:
|
| 147 |
+
img (PIL Image): Image to be cropped and resized.
|
| 148 |
+
|
| 149 |
+
Returns:
|
| 150 |
+
PIL Image: Resized, padded to at least target size, possibly cropped to exactly target size
|
| 151 |
+
"""
|
| 152 |
+
size = self.get_params(
|
| 153 |
+
img, self.size, self.longest,
|
| 154 |
+
self.random_scale_prob, self.random_scale_range,
|
| 155 |
+
self.random_aspect_prob, self.random_aspect_range
|
| 156 |
+
)
|
| 157 |
+
img = F.resize(img, size, self.interpolation)
|
| 158 |
+
return img
|
| 159 |
+
|
| 160 |
+
def __repr__(self):
|
| 161 |
+
format_string = self.__class__.__name__ + '(size={0}'.format(self.size)
|
| 162 |
+
format_string += f', interpolation={self.interpolation})'
|
| 163 |
+
format_string += f', longest={self.longest:.3f})'
|
| 164 |
+
return format_string
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
def center_crop_or_pad(img: torch.Tensor, output_size: List[int], fill=0) -> torch.Tensor:
|
| 168 |
+
"""Center crops and/or pads the given image.
|
| 169 |
+
If the image is torch Tensor, it is expected
|
| 170 |
+
to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
|
| 171 |
+
If image size is smaller than output size along any edge, image is padded with 0 and then center cropped.
|
| 172 |
+
|
| 173 |
+
Args:
|
| 174 |
+
img (PIL Image or Tensor): Image to be cropped.
|
| 175 |
+
output_size (sequence or int): (height, width) of the crop box. If int or sequence with single int,
|
| 176 |
+
it is used for both directions.
|
| 177 |
+
fill (int, Tuple[int]): Padding color
|
| 178 |
+
|
| 179 |
+
Returns:
|
| 180 |
+
PIL Image or Tensor: Cropped image.
|
| 181 |
+
"""
|
| 182 |
+
if isinstance(output_size, numbers.Number):
|
| 183 |
+
output_size = (int(output_size), int(output_size))
|
| 184 |
+
elif isinstance(output_size, (tuple, list)) and len(output_size) == 1:
|
| 185 |
+
output_size = (output_size[0], output_size[0])
|
| 186 |
+
|
| 187 |
+
_, image_height, image_width = F.get_dimensions(img)
|
| 188 |
+
crop_height, crop_width = output_size
|
| 189 |
+
|
| 190 |
+
if crop_width > image_width or crop_height > image_height:
|
| 191 |
+
padding_ltrb = [
|
| 192 |
+
(crop_width - image_width) // 2 if crop_width > image_width else 0,
|
| 193 |
+
(crop_height - image_height) // 2 if crop_height > image_height else 0,
|
| 194 |
+
(crop_width - image_width + 1) // 2 if crop_width > image_width else 0,
|
| 195 |
+
(crop_height - image_height + 1) // 2 if crop_height > image_height else 0,
|
| 196 |
+
]
|
| 197 |
+
img = F.pad(img, padding_ltrb, fill=fill)
|
| 198 |
+
_, image_height, image_width = F.get_dimensions(img)
|
| 199 |
+
if crop_width == image_width and crop_height == image_height:
|
| 200 |
+
return img
|
| 201 |
+
|
| 202 |
+
crop_top = int(round((image_height - crop_height) / 2.0))
|
| 203 |
+
crop_left = int(round((image_width - crop_width) / 2.0))
|
| 204 |
+
return F.crop(img, crop_top, crop_left, crop_height, crop_width)
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
class CenterCropOrPad(torch.nn.Module):
|
| 208 |
+
"""Crops the given image at the center.
|
| 209 |
+
If the image is torch Tensor, it is expected
|
| 210 |
+
to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
|
| 211 |
+
If image size is smaller than output size along any edge, image is padded with 0 and then center cropped.
|
| 212 |
+
|
| 213 |
+
Args:
|
| 214 |
+
size (sequence or int): Desired output size of the crop. If size is an
|
| 215 |
+
int instead of sequence like (h, w), a square crop (size, size) is
|
| 216 |
+
made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
|
| 217 |
+
"""
|
| 218 |
+
|
| 219 |
+
def __init__(self, size, fill=0):
|
| 220 |
+
super().__init__()
|
| 221 |
+
self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
|
| 222 |
+
self.fill = fill
|
| 223 |
+
|
| 224 |
+
def forward(self, img):
|
| 225 |
+
"""
|
| 226 |
+
Args:
|
| 227 |
+
img (PIL Image or Tensor): Image to be cropped.
|
| 228 |
+
|
| 229 |
+
Returns:
|
| 230 |
+
PIL Image or Tensor: Cropped image.
|
| 231 |
+
"""
|
| 232 |
+
return center_crop_or_pad(img, self.size, fill=self.fill)
|
| 233 |
+
|
| 234 |
+
def __repr__(self) -> str:
|
| 235 |
+
return f"{self.__class__.__name__}(size={self.size})"
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
def _convert_to_rgb(image):
|
| 239 |
+
return image.convert('RGB')
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
class color_jitter(object):
|
| 243 |
+
"""
|
| 244 |
+
Apply Color Jitter to the PIL image with a specified probability.
|
| 245 |
+
"""
|
| 246 |
+
def __init__(self, brightness=0., contrast=0., saturation=0., hue=0., p=0.8):
|
| 247 |
+
assert 0. <= p <= 1.
|
| 248 |
+
self.p = p
|
| 249 |
+
self.transf = ColorJitter(brightness=brightness, contrast=contrast, saturation=saturation, hue=hue)
|
| 250 |
+
|
| 251 |
+
def __call__(self, img):
|
| 252 |
+
if random.random() < self.p:
|
| 253 |
+
return self.transf(img)
|
| 254 |
+
else:
|
| 255 |
+
return img
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
class gray_scale(object):
|
| 259 |
+
"""
|
| 260 |
+
Apply Gray Scale to the PIL image with a specified probability.
|
| 261 |
+
"""
|
| 262 |
+
def __init__(self, p=0.2):
|
| 263 |
+
assert 0. <= p <= 1.
|
| 264 |
+
self.p = p
|
| 265 |
+
self.transf = Grayscale(num_output_channels=3)
|
| 266 |
+
|
| 267 |
+
def __call__(self, img):
|
| 268 |
+
if random.random() < self.p:
|
| 269 |
+
return self.transf(img)
|
| 270 |
+
else:
|
| 271 |
+
return img
|
| 272 |
+
|
| 273 |
+
|
| 274 |
+
def image_transform(
|
| 275 |
+
image_size: Union[int, Tuple[int, int]],
|
| 276 |
+
is_train: bool,
|
| 277 |
+
mean: Optional[Tuple[float, ...]] = None,
|
| 278 |
+
std: Optional[Tuple[float, ...]] = None,
|
| 279 |
+
resize_mode: Optional[str] = None,
|
| 280 |
+
interpolation: Optional[str] = None,
|
| 281 |
+
fill_color: int = 0,
|
| 282 |
+
aug_cfg: Optional[Union[Dict[str, Any], AugmentationCfg]] = None,
|
| 283 |
+
):
|
| 284 |
+
mean = mean or OPENAI_DATASET_MEAN
|
| 285 |
+
if not isinstance(mean, (list, tuple)):
|
| 286 |
+
mean = (mean,) * 3
|
| 287 |
+
|
| 288 |
+
std = std or OPENAI_DATASET_STD
|
| 289 |
+
if not isinstance(std, (list, tuple)):
|
| 290 |
+
std = (std,) * 3
|
| 291 |
+
|
| 292 |
+
interpolation = interpolation or 'bicubic'
|
| 293 |
+
assert interpolation in ['bicubic', 'bilinear', 'random']
|
| 294 |
+
# NOTE random is ignored for interpolation_mode, so defaults to BICUBIC for inference if set
|
| 295 |
+
interpolation_mode = InterpolationMode.BILINEAR if interpolation == 'bilinear' else InterpolationMode.BICUBIC
|
| 296 |
+
|
| 297 |
+
resize_mode = resize_mode or 'shortest'
|
| 298 |
+
assert resize_mode in ('shortest', 'longest', 'squash')
|
| 299 |
+
|
| 300 |
+
if isinstance(aug_cfg, dict):
|
| 301 |
+
aug_cfg = AugmentationCfg(**aug_cfg)
|
| 302 |
+
else:
|
| 303 |
+
aug_cfg = aug_cfg or AugmentationCfg()
|
| 304 |
+
|
| 305 |
+
normalize = Normalize(mean=mean, std=std)
|
| 306 |
+
|
| 307 |
+
if is_train:
|
| 308 |
+
aug_cfg_dict = {k: v for k, v in asdict(aug_cfg).items() if v is not None}
|
| 309 |
+
use_timm = aug_cfg_dict.pop('use_timm', False)
|
| 310 |
+
if use_timm:
|
| 311 |
+
from timm.data import create_transform # timm can still be optional
|
| 312 |
+
if isinstance(image_size, (tuple, list)):
|
| 313 |
+
assert len(image_size) >= 2
|
| 314 |
+
input_size = (3,) + image_size[-2:]
|
| 315 |
+
else:
|
| 316 |
+
input_size = (3, image_size, image_size)
|
| 317 |
+
|
| 318 |
+
aug_cfg_dict.setdefault('color_jitter', None) # disable by default
|
| 319 |
+
# drop extra non-timm items
|
| 320 |
+
aug_cfg_dict.pop('color_jitter_prob', None)
|
| 321 |
+
aug_cfg_dict.pop('gray_scale_prob', None)
|
| 322 |
+
|
| 323 |
+
train_transform = create_transform(
|
| 324 |
+
input_size=input_size,
|
| 325 |
+
is_training=True,
|
| 326 |
+
hflip=0.,
|
| 327 |
+
mean=mean,
|
| 328 |
+
std=std,
|
| 329 |
+
re_mode='pixel',
|
| 330 |
+
interpolation=interpolation,
|
| 331 |
+
**aug_cfg_dict,
|
| 332 |
+
)
|
| 333 |
+
else:
|
| 334 |
+
train_transform = [
|
| 335 |
+
RandomResizedCrop(
|
| 336 |
+
image_size,
|
| 337 |
+
scale=aug_cfg_dict.pop('scale'),
|
| 338 |
+
interpolation=InterpolationMode.BICUBIC,
|
| 339 |
+
),
|
| 340 |
+
_convert_to_rgb,
|
| 341 |
+
]
|
| 342 |
+
if aug_cfg.color_jitter_prob:
|
| 343 |
+
assert aug_cfg.color_jitter is not None and len(aug_cfg.color_jitter) == 4
|
| 344 |
+
train_transform.extend([
|
| 345 |
+
color_jitter(*aug_cfg.color_jitter, p=aug_cfg.color_jitter_prob)
|
| 346 |
+
])
|
| 347 |
+
if aug_cfg.gray_scale_prob:
|
| 348 |
+
train_transform.extend([
|
| 349 |
+
gray_scale(aug_cfg.gray_scale_prob)
|
| 350 |
+
])
|
| 351 |
+
train_transform.extend([
|
| 352 |
+
ToTensor(),
|
| 353 |
+
normalize,
|
| 354 |
+
])
|
| 355 |
+
train_transform = Compose(train_transform)
|
| 356 |
+
if aug_cfg_dict:
|
| 357 |
+
warnings.warn(f'Unused augmentation cfg items, specify `use_timm` to use ({list(aug_cfg_dict.keys())}).')
|
| 358 |
+
return train_transform
|
| 359 |
+
else:
|
| 360 |
+
if resize_mode == 'longest':
|
| 361 |
+
transforms = [
|
| 362 |
+
ResizeKeepRatio(image_size, interpolation=interpolation_mode, longest=1),
|
| 363 |
+
CenterCropOrPad(image_size, fill=fill_color)
|
| 364 |
+
]
|
| 365 |
+
elif resize_mode == 'squash':
|
| 366 |
+
if isinstance(image_size, int):
|
| 367 |
+
image_size = (image_size, image_size)
|
| 368 |
+
transforms = [
|
| 369 |
+
Resize(image_size, interpolation=interpolation_mode),
|
| 370 |
+
]
|
| 371 |
+
else:
|
| 372 |
+
assert resize_mode == 'shortest'
|
| 373 |
+
if not isinstance(image_size, (tuple, list)):
|
| 374 |
+
image_size = (image_size, image_size)
|
| 375 |
+
if image_size[0] == image_size[1]:
|
| 376 |
+
# simple case, use torchvision built-in Resize w/ shortest edge mode (scalar size arg)
|
| 377 |
+
transforms = [
|
| 378 |
+
Resize(image_size[0], interpolation=interpolation_mode)
|
| 379 |
+
]
|
| 380 |
+
else:
|
| 381 |
+
# resize shortest edge to matching target dim for non-square target
|
| 382 |
+
transforms = [ResizeKeepRatio(image_size)]
|
| 383 |
+
transforms += [CenterCrop(image_size)]
|
| 384 |
+
|
| 385 |
+
transforms.extend([
|
| 386 |
+
_convert_to_rgb,
|
| 387 |
+
ToTensor(),
|
| 388 |
+
normalize,
|
| 389 |
+
])
|
| 390 |
+
return Compose(transforms)
|
| 391 |
+
|
| 392 |
+
|
| 393 |
+
def image_transform_v2(
|
| 394 |
+
cfg: PreprocessCfg,
|
| 395 |
+
is_train: bool,
|
| 396 |
+
aug_cfg: Optional[Union[Dict[str, Any], AugmentationCfg]] = None,
|
| 397 |
+
):
|
| 398 |
+
return image_transform(
|
| 399 |
+
image_size=cfg.size,
|
| 400 |
+
is_train=is_train,
|
| 401 |
+
mean=cfg.mean,
|
| 402 |
+
std=cfg.std,
|
| 403 |
+
interpolation=cfg.interpolation,
|
| 404 |
+
resize_mode=cfg.resize_mode,
|
| 405 |
+
fill_color=cfg.fill_color,
|
| 406 |
+
aug_cfg=aug_cfg,
|
| 407 |
+
)
|
src/open_clip/transformer.py
ADDED
|
@@ -0,0 +1,908 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from collections import OrderedDict
|
| 2 |
+
import math
|
| 3 |
+
from typing import Callable, List, Optional, Sequence, Tuple, Union
|
| 4 |
+
from functools import partial
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
from torch import nn
|
| 8 |
+
from torch.nn import functional as F
|
| 9 |
+
from torch.utils.checkpoint import checkpoint
|
| 10 |
+
|
| 11 |
+
from .utils import to_2tuple
|
| 12 |
+
from .pos_embed import get_2d_sincos_pos_embed
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class LayerNormFp32(nn.LayerNorm):
|
| 16 |
+
"""Subclass torch's LayerNorm to handle fp16 (by casting to float32 and back)."""
|
| 17 |
+
|
| 18 |
+
def forward(self, x: torch.Tensor):
|
| 19 |
+
orig_type = x.dtype
|
| 20 |
+
x = F.layer_norm(x.to(torch.float32), self.normalized_shape, self.weight, self.bias, self.eps)
|
| 21 |
+
return x.to(orig_type)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class LayerNorm(nn.LayerNorm):
|
| 25 |
+
"""Subclass torch's LayerNorm (with cast back to input dtype)."""
|
| 26 |
+
|
| 27 |
+
def forward(self, x: torch.Tensor):
|
| 28 |
+
orig_type = x.dtype
|
| 29 |
+
x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
|
| 30 |
+
return x.to(orig_type)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
class QuickGELU(nn.Module):
|
| 34 |
+
# NOTE This is slower than nn.GELU or nn.SiLU and uses more GPU memory
|
| 35 |
+
def forward(self, x: torch.Tensor):
|
| 36 |
+
return x * torch.sigmoid(1.702 * x)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
class LayerScale(nn.Module):
|
| 40 |
+
def __init__(self, dim, init_values=1e-5, inplace=False):
|
| 41 |
+
super().__init__()
|
| 42 |
+
self.inplace = inplace
|
| 43 |
+
self.gamma = nn.Parameter(init_values * torch.ones(dim))
|
| 44 |
+
|
| 45 |
+
def forward(self, x):
|
| 46 |
+
return x.mul_(self.gamma) if self.inplace else x * self.gamma
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
class PatchDropout(nn.Module):
|
| 50 |
+
"""
|
| 51 |
+
https://arxiv.org/abs/2212.00794
|
| 52 |
+
"""
|
| 53 |
+
|
| 54 |
+
def __init__(self, prob, exclude_first_token=True):
|
| 55 |
+
super().__init__()
|
| 56 |
+
assert 0 <= prob < 1.
|
| 57 |
+
self.prob = prob
|
| 58 |
+
self.exclude_first_token = exclude_first_token # exclude CLS token
|
| 59 |
+
|
| 60 |
+
def forward(self, x):
|
| 61 |
+
if not self.training or self.prob == 0.:
|
| 62 |
+
return x
|
| 63 |
+
|
| 64 |
+
if self.exclude_first_token:
|
| 65 |
+
cls_tokens, x = x[:, :1], x[:, 1:]
|
| 66 |
+
else:
|
| 67 |
+
cls_tokens = torch.jit.annotate(torch.Tensor, x[:, :1])
|
| 68 |
+
|
| 69 |
+
batch = x.size()[0]
|
| 70 |
+
num_tokens = x.size()[1]
|
| 71 |
+
|
| 72 |
+
batch_indices = torch.arange(batch)
|
| 73 |
+
batch_indices = batch_indices[..., None]
|
| 74 |
+
|
| 75 |
+
keep_prob = 1 - self.prob
|
| 76 |
+
num_patches_keep = max(1, int(num_tokens * keep_prob))
|
| 77 |
+
|
| 78 |
+
rand = torch.randn(batch, num_tokens)
|
| 79 |
+
patch_indices_keep = rand.topk(num_patches_keep, dim=-1).indices
|
| 80 |
+
|
| 81 |
+
x = x[batch_indices, patch_indices_keep]
|
| 82 |
+
|
| 83 |
+
if self.exclude_first_token:
|
| 84 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
| 85 |
+
|
| 86 |
+
return x
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
class Attention(nn.Module):
|
| 90 |
+
def __init__(
|
| 91 |
+
self,
|
| 92 |
+
dim: int,
|
| 93 |
+
num_heads: int = 8,
|
| 94 |
+
qkv_bias: bool = True,
|
| 95 |
+
scaled_cosine: bool = False,
|
| 96 |
+
scale_heads: bool = False,
|
| 97 |
+
logit_scale_max: float = math.log(1. / 0.01),
|
| 98 |
+
batch_first: bool = True,
|
| 99 |
+
attn_drop: float = 0.,
|
| 100 |
+
proj_drop: float = 0.
|
| 101 |
+
):
|
| 102 |
+
super().__init__()
|
| 103 |
+
self.scaled_cosine = scaled_cosine
|
| 104 |
+
self.scale_heads = scale_heads
|
| 105 |
+
assert dim % num_heads == 0, 'dim should be divisible by num_heads'
|
| 106 |
+
self.num_heads = num_heads
|
| 107 |
+
self.head_dim = dim // num_heads
|
| 108 |
+
self.scale = self.head_dim ** -0.5
|
| 109 |
+
self.logit_scale_max = logit_scale_max
|
| 110 |
+
self.batch_first = batch_first
|
| 111 |
+
self.use_fsdpa = hasattr(nn.functional, 'scaled_dot_product_attention')
|
| 112 |
+
|
| 113 |
+
# keeping in_proj in this form (instead of nn.Linear) to match weight scheme of original
|
| 114 |
+
self.in_proj_weight = nn.Parameter(torch.randn((dim * 3, dim)) * self.scale)
|
| 115 |
+
if qkv_bias:
|
| 116 |
+
self.in_proj_bias = nn.Parameter(torch.zeros(dim * 3))
|
| 117 |
+
else:
|
| 118 |
+
self.in_proj_bias = None
|
| 119 |
+
|
| 120 |
+
if self.scaled_cosine:
|
| 121 |
+
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))))
|
| 122 |
+
else:
|
| 123 |
+
self.logit_scale = None
|
| 124 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
| 125 |
+
if self.scale_heads:
|
| 126 |
+
self.head_scale = nn.Parameter(torch.ones((num_heads, 1, 1)))
|
| 127 |
+
else:
|
| 128 |
+
self.head_scale = None
|
| 129 |
+
self.out_proj = nn.Linear(dim, dim)
|
| 130 |
+
self.out_drop = nn.Dropout(proj_drop)
|
| 131 |
+
|
| 132 |
+
def forward(self, x, attn_mask: Optional[torch.Tensor] = None):
|
| 133 |
+
if self.batch_first:
|
| 134 |
+
x = x.transpose(0, 1)
|
| 135 |
+
|
| 136 |
+
L, N, C = x.shape
|
| 137 |
+
q, k, v = F.linear(x, self.in_proj_weight, self.in_proj_bias).chunk(3, dim=-1)
|
| 138 |
+
q = q.reshape(L, N * self.num_heads, -1).transpose(0, 1)
|
| 139 |
+
k = k.reshape(L, N * self.num_heads, -1).transpose(0, 1)
|
| 140 |
+
v = v.reshape(L, N * self.num_heads, -1).transpose(0, 1)
|
| 141 |
+
|
| 142 |
+
if attn_mask is not None and attn_mask.dtype == torch.bool:
|
| 143 |
+
new_attn_mask = torch.zeros_like(attn_mask, dtype=q.dtype)
|
| 144 |
+
new_attn_mask.masked_fill_(attn_mask, float("-inf"))
|
| 145 |
+
attn_mask = new_attn_mask
|
| 146 |
+
|
| 147 |
+
if self.logit_scale is not None:
|
| 148 |
+
attn = torch.bmm(F.normalize(q, dim=-1), F.normalize(k, dim=-1).transpose(-1, -2))
|
| 149 |
+
logit_scale = torch.clamp(self.logit_scale, max=self.logit_scale_max).exp()
|
| 150 |
+
attn = attn.view(N, self.num_heads, L, L) * logit_scale
|
| 151 |
+
attn = attn.view(-1, L, L)
|
| 152 |
+
if attn_mask is not None:
|
| 153 |
+
attn = attn + attn_mask
|
| 154 |
+
attn = attn.softmax(dim=-1)
|
| 155 |
+
attn = self.attn_drop(attn)
|
| 156 |
+
x = torch.bmm(attn, v)
|
| 157 |
+
else:
|
| 158 |
+
if self.use_fsdpa:
|
| 159 |
+
x = F.scaled_dot_product_attention(
|
| 160 |
+
q, k, v,
|
| 161 |
+
attn_mask=attn_mask,
|
| 162 |
+
dropout_p=self.attn_drop.p if self.training else 0.,
|
| 163 |
+
)
|
| 164 |
+
else:
|
| 165 |
+
q = q * self.scale
|
| 166 |
+
attn = torch.bmm(q, k.transpose(-1, -2))
|
| 167 |
+
if attn_mask is not None:
|
| 168 |
+
attn += attn_mask
|
| 169 |
+
attn = attn.softmax(dim=-1)
|
| 170 |
+
attn = self.attn_drop(attn)
|
| 171 |
+
x = torch.bmm(attn, v)
|
| 172 |
+
|
| 173 |
+
if self.head_scale is not None:
|
| 174 |
+
x = x.view(N, self.num_heads, L, C) * self.head_scale
|
| 175 |
+
x = x.view(-1, L, C)
|
| 176 |
+
|
| 177 |
+
x = x.transpose(0, 1).reshape(L, N, C)
|
| 178 |
+
|
| 179 |
+
if self.batch_first:
|
| 180 |
+
x = x.transpose(0, 1)
|
| 181 |
+
|
| 182 |
+
x = self.out_proj(x)
|
| 183 |
+
x = self.out_drop(x)
|
| 184 |
+
return x
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
class AttentionalPooler(nn.Module):
|
| 188 |
+
def __init__(
|
| 189 |
+
self,
|
| 190 |
+
d_model: int,
|
| 191 |
+
context_dim: int,
|
| 192 |
+
n_head: int = 8,
|
| 193 |
+
n_queries: int = 256,
|
| 194 |
+
norm_layer: Callable = LayerNorm,
|
| 195 |
+
):
|
| 196 |
+
super().__init__()
|
| 197 |
+
self.query = nn.Parameter(torch.randn(n_queries, d_model))
|
| 198 |
+
self.attn = nn.MultiheadAttention(d_model, n_head, kdim=context_dim, vdim=context_dim, batch_first=True)
|
| 199 |
+
self.ln_q = norm_layer(d_model)
|
| 200 |
+
self.ln_k = norm_layer(context_dim)
|
| 201 |
+
|
| 202 |
+
def forward(self, x: torch.Tensor):
|
| 203 |
+
N = x.shape[0]
|
| 204 |
+
x = self.ln_k(x)
|
| 205 |
+
q = self.ln_q(self.query)
|
| 206 |
+
out = self.attn(q.unsqueeze(0).expand(N, -1, -1), x, x, need_weights=False)[0]
|
| 207 |
+
return out
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
class ResidualAttentionBlock(nn.Module):
|
| 211 |
+
def __init__(
|
| 212 |
+
self,
|
| 213 |
+
d_model: int,
|
| 214 |
+
n_head: int,
|
| 215 |
+
mlp_ratio: float = 4.0,
|
| 216 |
+
ls_init_value: float = None,
|
| 217 |
+
act_layer: Callable = nn.GELU,
|
| 218 |
+
norm_layer: Callable = LayerNorm,
|
| 219 |
+
is_cross_attention: bool = False,
|
| 220 |
+
batch_first: bool = True,
|
| 221 |
+
):
|
| 222 |
+
super().__init__()
|
| 223 |
+
|
| 224 |
+
self.ln_1 = norm_layer(d_model)
|
| 225 |
+
self.attn = nn.MultiheadAttention(d_model, n_head, batch_first=batch_first)
|
| 226 |
+
self.ls_1 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
|
| 227 |
+
if is_cross_attention:
|
| 228 |
+
self.ln_1_kv = norm_layer(d_model)
|
| 229 |
+
|
| 230 |
+
self.ln_2 = norm_layer(d_model)
|
| 231 |
+
mlp_width = int(d_model * mlp_ratio)
|
| 232 |
+
self.mlp = nn.Sequential(OrderedDict([
|
| 233 |
+
("c_fc", nn.Linear(d_model, mlp_width)),
|
| 234 |
+
("gelu", act_layer()),
|
| 235 |
+
("c_proj", nn.Linear(mlp_width, d_model))
|
| 236 |
+
]))
|
| 237 |
+
self.ls_2 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
|
| 238 |
+
|
| 239 |
+
def attention(
|
| 240 |
+
self,
|
| 241 |
+
q_x: torch.Tensor,
|
| 242 |
+
k_x: Optional[torch.Tensor] = None,
|
| 243 |
+
v_x: Optional[torch.Tensor] = None,
|
| 244 |
+
attn_mask: Optional[torch.Tensor] = None,
|
| 245 |
+
):
|
| 246 |
+
k_x = k_x if k_x is not None else q_x
|
| 247 |
+
v_x = v_x if v_x is not None else q_x
|
| 248 |
+
|
| 249 |
+
attn_mask = attn_mask.to(q_x.dtype) if attn_mask is not None else None
|
| 250 |
+
return self.attn(
|
| 251 |
+
q_x, k_x, v_x, need_weights=False, attn_mask=attn_mask
|
| 252 |
+
)[0]
|
| 253 |
+
|
| 254 |
+
def forward(
|
| 255 |
+
self,
|
| 256 |
+
q_x: torch.Tensor,
|
| 257 |
+
k_x: Optional[torch.Tensor] = None,
|
| 258 |
+
v_x: Optional[torch.Tensor] = None,
|
| 259 |
+
attn_mask: Optional[torch.Tensor] = None,
|
| 260 |
+
):
|
| 261 |
+
k_x = self.ln_1_kv(k_x) if hasattr(self, "ln_1_kv") and k_x is not None else None
|
| 262 |
+
v_x = self.ln_1_kv(v_x) if hasattr(self, "ln_1_kv") and v_x is not None else None
|
| 263 |
+
x = q_x + self.ls_1(self.attention(q_x=self.ln_1(q_x), k_x=k_x, v_x=v_x, attn_mask=attn_mask))
|
| 264 |
+
x = x + self.ls_2(self.mlp(self.ln_2(x)))
|
| 265 |
+
return x
|
| 266 |
+
|
| 267 |
+
|
| 268 |
+
class CustomResidualAttentionBlock(nn.Module):
|
| 269 |
+
def __init__(
|
| 270 |
+
self,
|
| 271 |
+
d_model: int,
|
| 272 |
+
n_head: int,
|
| 273 |
+
mlp_ratio: float = 4.0,
|
| 274 |
+
ls_init_value: float = None,
|
| 275 |
+
act_layer: Callable = nn.GELU,
|
| 276 |
+
norm_layer: Callable = LayerNorm,
|
| 277 |
+
scale_cosine_attn: bool = False,
|
| 278 |
+
scale_heads: bool = False,
|
| 279 |
+
scale_attn: bool = False,
|
| 280 |
+
scale_fc: bool = False,
|
| 281 |
+
batch_first: bool = True,
|
| 282 |
+
):
|
| 283 |
+
super().__init__()
|
| 284 |
+
|
| 285 |
+
self.ln_1 = norm_layer(d_model)
|
| 286 |
+
self.attn = Attention(
|
| 287 |
+
d_model,
|
| 288 |
+
n_head,
|
| 289 |
+
scaled_cosine=scale_cosine_attn,
|
| 290 |
+
scale_heads=scale_heads,
|
| 291 |
+
batch_first=batch_first,
|
| 292 |
+
)
|
| 293 |
+
self.ln_attn = norm_layer(d_model) if scale_attn else nn.Identity()
|
| 294 |
+
self.ls_1 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
|
| 295 |
+
|
| 296 |
+
self.ln_2 = norm_layer(d_model)
|
| 297 |
+
mlp_width = int(d_model * mlp_ratio)
|
| 298 |
+
self.mlp = nn.Sequential(OrderedDict([
|
| 299 |
+
("c_fc", nn.Linear(d_model, mlp_width)),
|
| 300 |
+
("gelu", act_layer()),
|
| 301 |
+
('ln', norm_layer(mlp_width) if scale_fc else nn.Identity()),
|
| 302 |
+
("c_proj", nn.Linear(mlp_width, d_model))
|
| 303 |
+
]))
|
| 304 |
+
self.ls_2 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
|
| 305 |
+
|
| 306 |
+
def get_reference_weight(self):
|
| 307 |
+
return self.mlp.c_fc.weight
|
| 308 |
+
|
| 309 |
+
def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
|
| 310 |
+
x = x + self.ls_1(self.ln_attn(self.attn(self.ln_1(x), attn_mask=attn_mask)))
|
| 311 |
+
x = x + self.ls_2(self.mlp(self.ln_2(x)))
|
| 312 |
+
return x
|
| 313 |
+
|
| 314 |
+
|
| 315 |
+
def _expand_token(token, batch_size: int):
|
| 316 |
+
return token.view(1, 1, -1).expand(batch_size, -1, -1)
|
| 317 |
+
|
| 318 |
+
|
| 319 |
+
class Transformer(nn.Module):
|
| 320 |
+
def __init__(
|
| 321 |
+
self,
|
| 322 |
+
width: int,
|
| 323 |
+
layers: int,
|
| 324 |
+
heads: int,
|
| 325 |
+
mlp_ratio: float = 4.0,
|
| 326 |
+
ls_init_value: float = None,
|
| 327 |
+
act_layer: Callable = nn.GELU,
|
| 328 |
+
norm_layer: Callable = LayerNorm,
|
| 329 |
+
batch_first: bool = True,
|
| 330 |
+
):
|
| 331 |
+
super().__init__()
|
| 332 |
+
self.width = width
|
| 333 |
+
self.layers = layers
|
| 334 |
+
self.batch_first = batch_first
|
| 335 |
+
self.grad_checkpointing = False
|
| 336 |
+
|
| 337 |
+
self.resblocks = nn.ModuleList([
|
| 338 |
+
ResidualAttentionBlock(
|
| 339 |
+
width,
|
| 340 |
+
heads,
|
| 341 |
+
mlp_ratio,
|
| 342 |
+
ls_init_value=ls_init_value,
|
| 343 |
+
act_layer=act_layer,
|
| 344 |
+
norm_layer=norm_layer,
|
| 345 |
+
batch_first=batch_first,
|
| 346 |
+
)
|
| 347 |
+
for _ in range(layers)
|
| 348 |
+
])
|
| 349 |
+
|
| 350 |
+
def get_cast_dtype(self) -> torch.dtype:
|
| 351 |
+
if hasattr(self.resblocks[0].mlp.c_fc, 'int8_original_dtype'):
|
| 352 |
+
return self.resblocks[0].mlp.c_fc.int8_original_dtype
|
| 353 |
+
return self.resblocks[0].mlp.c_fc.weight.dtype
|
| 354 |
+
|
| 355 |
+
def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
|
| 356 |
+
if not self.batch_first:
|
| 357 |
+
x = x.transpose(0, 1).contiguous() # NLD -> LND
|
| 358 |
+
for r in self.resblocks:
|
| 359 |
+
if self.grad_checkpointing and not torch.jit.is_scripting():
|
| 360 |
+
# TODO: handle kwargs https://github.com/pytorch/pytorch/issues/79887#issuecomment-1161758372
|
| 361 |
+
x = checkpoint(r, x, None, None, attn_mask)
|
| 362 |
+
else:
|
| 363 |
+
x = r(x, attn_mask=attn_mask)
|
| 364 |
+
if not self.batch_first:
|
| 365 |
+
x = x.transpose(0, 1) # LND -> NLD
|
| 366 |
+
return x
|
| 367 |
+
|
| 368 |
+
|
| 369 |
+
class CustomTransformer(nn.Module):
|
| 370 |
+
""" A custom transformer that can use different block types. """
|
| 371 |
+
def __init__(
|
| 372 |
+
self,
|
| 373 |
+
width: int,
|
| 374 |
+
layers: int,
|
| 375 |
+
heads: int,
|
| 376 |
+
mlp_ratio: float = 4.0,
|
| 377 |
+
ls_init_value: float = None,
|
| 378 |
+
act_layer: Callable = nn.GELU,
|
| 379 |
+
norm_layer: Callable = LayerNorm,
|
| 380 |
+
batch_first: bool = True,
|
| 381 |
+
block_types: Union[str, List[str]] = 'CustomResidualAttentionBlock',
|
| 382 |
+
):
|
| 383 |
+
super().__init__()
|
| 384 |
+
self.width = width
|
| 385 |
+
self.layers = layers
|
| 386 |
+
self.batch_first = batch_first # run trasnformer stack in batch first (N, L, D)
|
| 387 |
+
self.grad_checkpointing = False
|
| 388 |
+
|
| 389 |
+
if isinstance(block_types, str):
|
| 390 |
+
block_types = [block_types] * layers
|
| 391 |
+
assert len(block_types) == layers
|
| 392 |
+
|
| 393 |
+
def _create_block(bt: str):
|
| 394 |
+
if bt == 'CustomResidualAttentionBlock':
|
| 395 |
+
return CustomResidualAttentionBlock(
|
| 396 |
+
width,
|
| 397 |
+
heads,
|
| 398 |
+
mlp_ratio=mlp_ratio,
|
| 399 |
+
ls_init_value=ls_init_value,
|
| 400 |
+
act_layer=act_layer,
|
| 401 |
+
norm_layer=norm_layer,
|
| 402 |
+
batch_first=batch_first,
|
| 403 |
+
)
|
| 404 |
+
else:
|
| 405 |
+
assert False
|
| 406 |
+
|
| 407 |
+
self.resblocks = nn.ModuleList([
|
| 408 |
+
_create_block(bt)
|
| 409 |
+
for bt in block_types
|
| 410 |
+
])
|
| 411 |
+
|
| 412 |
+
def get_cast_dtype(self) -> torch.dtype:
|
| 413 |
+
weight = self.resblocks[0].get_reference_weight()
|
| 414 |
+
if hasattr(weight, 'int8_original_dtype'):
|
| 415 |
+
return weight.int8_original_dtype
|
| 416 |
+
return weight.dtype
|
| 417 |
+
|
| 418 |
+
def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
|
| 419 |
+
if not self.batch_first:
|
| 420 |
+
x = x.transpose(0, 1) # NLD -> LND
|
| 421 |
+
|
| 422 |
+
for r in self.resblocks:
|
| 423 |
+
if self.grad_checkpointing and not torch.jit.is_scripting():
|
| 424 |
+
# TODO: handle kwargs https://github.com/pytorch/pytorch/issues/79887#issuecomment-1161758372
|
| 425 |
+
x = checkpoint(r, x, None, None, attn_mask)
|
| 426 |
+
else:
|
| 427 |
+
x = r(x, attn_mask=attn_mask)
|
| 428 |
+
|
| 429 |
+
if not self.batch_first:
|
| 430 |
+
x = x.transpose(0, 1) # NLD -> LND
|
| 431 |
+
return x
|
| 432 |
+
|
| 433 |
+
|
| 434 |
+
class VisionTransformer(nn.Module):
|
| 435 |
+
output_tokens: torch.jit.Final[bool]
|
| 436 |
+
|
| 437 |
+
def __init__(
|
| 438 |
+
self,
|
| 439 |
+
image_size: int,
|
| 440 |
+
patch_size: int,
|
| 441 |
+
width: int,
|
| 442 |
+
layers: int,
|
| 443 |
+
heads: int,
|
| 444 |
+
mlp_ratio: float,
|
| 445 |
+
ls_init_value: float = None,
|
| 446 |
+
attentional_pool: bool = False,
|
| 447 |
+
attn_pooler_queries: int = 256,
|
| 448 |
+
attn_pooler_heads: int = 8,
|
| 449 |
+
output_dim: int = 512,
|
| 450 |
+
patch_dropout: float = 0.,
|
| 451 |
+
no_ln_pre: bool = False,
|
| 452 |
+
pos_embed_type: str = 'learnable',
|
| 453 |
+
pool_type: str = 'tok',
|
| 454 |
+
final_ln_after_pool: bool = False,
|
| 455 |
+
act_layer: Callable = nn.GELU,
|
| 456 |
+
norm_layer: Callable = LayerNorm,
|
| 457 |
+
output_tokens: bool = False,
|
| 458 |
+
):
|
| 459 |
+
super().__init__()
|
| 460 |
+
assert pool_type in ('tok', 'avg', 'none')
|
| 461 |
+
self.output_tokens = output_tokens
|
| 462 |
+
image_height, image_width = self.image_size = to_2tuple(image_size)
|
| 463 |
+
patch_height, patch_width = self.patch_size = to_2tuple(patch_size)
|
| 464 |
+
self.grid_size = (image_height // patch_height, image_width // patch_width)
|
| 465 |
+
self.final_ln_after_pool = final_ln_after_pool # currently ignored w/ attn pool enabled
|
| 466 |
+
self.output_dim = output_dim
|
| 467 |
+
|
| 468 |
+
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
|
| 469 |
+
|
| 470 |
+
# class embeddings and positional embeddings
|
| 471 |
+
scale = width ** -0.5
|
| 472 |
+
self.class_embedding = nn.Parameter(scale * torch.randn(width))
|
| 473 |
+
if pos_embed_type == 'learnable':
|
| 474 |
+
self.positional_embedding = nn.Parameter(
|
| 475 |
+
scale * torch.randn(self.grid_size[0] * self.grid_size[1] + 1, width))
|
| 476 |
+
elif pos_embed_type == 'sin_cos_2d':
|
| 477 |
+
# fixed sin-cos embedding
|
| 478 |
+
assert self.grid_size[0] == self.grid_size[1],\
|
| 479 |
+
'currently sin cos 2d pos embedding only supports square input'
|
| 480 |
+
self.positional_embedding = nn.Parameter(
|
| 481 |
+
torch.zeros(self.grid_size[0] * self.grid_size[1] + 1, width), requires_grad=False)
|
| 482 |
+
pos_embed_type = get_2d_sincos_pos_embed(width, self.grid_size[0], cls_token=True)
|
| 483 |
+
self.positional_embedding.data.copy_(torch.from_numpy(pos_embed_type).float())
|
| 484 |
+
else:
|
| 485 |
+
raise ValueError
|
| 486 |
+
|
| 487 |
+
# setting a patch_dropout of 0. would mean it is disabled and this function would be the identity fn
|
| 488 |
+
self.patch_dropout = PatchDropout(patch_dropout) if patch_dropout > 0. else nn.Identity()
|
| 489 |
+
|
| 490 |
+
self.ln_pre = nn.Identity() if no_ln_pre else norm_layer(width)
|
| 491 |
+
self.transformer = Transformer(
|
| 492 |
+
width,
|
| 493 |
+
layers,
|
| 494 |
+
heads,
|
| 495 |
+
mlp_ratio,
|
| 496 |
+
ls_init_value=ls_init_value,
|
| 497 |
+
act_layer=act_layer,
|
| 498 |
+
norm_layer=norm_layer,
|
| 499 |
+
)
|
| 500 |
+
|
| 501 |
+
if attentional_pool:
|
| 502 |
+
if isinstance(attentional_pool, str):
|
| 503 |
+
self.attn_pool_type = attentional_pool
|
| 504 |
+
self.pool_type = 'none'
|
| 505 |
+
if attentional_pool in ('parallel', 'cascade'):
|
| 506 |
+
self.attn_pool = AttentionalPooler(
|
| 507 |
+
output_dim,
|
| 508 |
+
width,
|
| 509 |
+
n_head=attn_pooler_heads,
|
| 510 |
+
n_queries=attn_pooler_queries,
|
| 511 |
+
)
|
| 512 |
+
self.attn_pool_contrastive = AttentionalPooler(
|
| 513 |
+
output_dim,
|
| 514 |
+
width,
|
| 515 |
+
n_head=attn_pooler_heads,
|
| 516 |
+
n_queries=1,
|
| 517 |
+
)
|
| 518 |
+
else:
|
| 519 |
+
assert False
|
| 520 |
+
else:
|
| 521 |
+
self.attn_pool_type = ''
|
| 522 |
+
self.pool_type = pool_type
|
| 523 |
+
self.attn_pool = AttentionalPooler(
|
| 524 |
+
output_dim,
|
| 525 |
+
width,
|
| 526 |
+
n_head=attn_pooler_heads,
|
| 527 |
+
n_queries=attn_pooler_queries,
|
| 528 |
+
)
|
| 529 |
+
self.attn_pool_contrastive = None
|
| 530 |
+
pool_dim = output_dim
|
| 531 |
+
else:
|
| 532 |
+
self.attn_pool = None
|
| 533 |
+
pool_dim = width
|
| 534 |
+
self.pool_type = pool_type
|
| 535 |
+
|
| 536 |
+
self.ln_post = norm_layer(pool_dim)
|
| 537 |
+
self.proj = nn.Parameter(scale * torch.randn(pool_dim, output_dim))
|
| 538 |
+
|
| 539 |
+
self.init_parameters()
|
| 540 |
+
|
| 541 |
+
def lock(self, unlocked_groups=0, freeze_bn_stats=False):
|
| 542 |
+
for param in self.parameters():
|
| 543 |
+
param.requires_grad = False
|
| 544 |
+
|
| 545 |
+
if unlocked_groups != 0:
|
| 546 |
+
groups = [
|
| 547 |
+
[
|
| 548 |
+
self.conv1,
|
| 549 |
+
self.class_embedding,
|
| 550 |
+
self.positional_embedding,
|
| 551 |
+
self.ln_pre,
|
| 552 |
+
],
|
| 553 |
+
*self.transformer.resblocks[:-1],
|
| 554 |
+
[
|
| 555 |
+
self.transformer.resblocks[-1],
|
| 556 |
+
self.ln_post,
|
| 557 |
+
],
|
| 558 |
+
self.proj,
|
| 559 |
+
]
|
| 560 |
+
|
| 561 |
+
def _unlock(x):
|
| 562 |
+
if isinstance(x, Sequence):
|
| 563 |
+
for g in x:
|
| 564 |
+
_unlock(g)
|
| 565 |
+
else:
|
| 566 |
+
if isinstance(x, torch.nn.Parameter):
|
| 567 |
+
x.requires_grad = True
|
| 568 |
+
else:
|
| 569 |
+
for p in x.parameters():
|
| 570 |
+
p.requires_grad = True
|
| 571 |
+
|
| 572 |
+
_unlock(groups[-unlocked_groups:])
|
| 573 |
+
|
| 574 |
+
def init_parameters(self):
|
| 575 |
+
# FIXME OpenAI CLIP did not define an init for the VisualTransformer
|
| 576 |
+
# TODO experiment if default PyTorch init, below, or alternate init is best.
|
| 577 |
+
|
| 578 |
+
# nn.init.normal_(self.class_embedding, std=self.scale)
|
| 579 |
+
# nn.init.normal_(self.positional_embedding, std=self.scale)
|
| 580 |
+
#
|
| 581 |
+
# proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
|
| 582 |
+
# attn_std = self.transformer.width ** -0.5
|
| 583 |
+
# fc_std = (2 * self.transformer.width) ** -0.5
|
| 584 |
+
# for block in self.transformer.resblocks:
|
| 585 |
+
# nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
|
| 586 |
+
# nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
|
| 587 |
+
# nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
|
| 588 |
+
# nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
|
| 589 |
+
#
|
| 590 |
+
# if self.text_projection is not None:
|
| 591 |
+
# nn.init.normal_(self.text_projection, std=self.scale)
|
| 592 |
+
pass
|
| 593 |
+
|
| 594 |
+
@torch.jit.ignore
|
| 595 |
+
def set_grad_checkpointing(self, enable=True):
|
| 596 |
+
self.transformer.grad_checkpointing = enable
|
| 597 |
+
|
| 598 |
+
def _global_pool(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 599 |
+
if self.pool_type == 'avg':
|
| 600 |
+
pooled, tokens = x[:, 1:].mean(dim=1), x[:, 1:]
|
| 601 |
+
elif self.pool_type == 'tok':
|
| 602 |
+
pooled, tokens = x[:, 0], x[:, 1:]
|
| 603 |
+
else:
|
| 604 |
+
pooled = tokens = x
|
| 605 |
+
|
| 606 |
+
return pooled, tokens
|
| 607 |
+
|
| 608 |
+
def forward(self, x: torch.Tensor):
|
| 609 |
+
x = self.conv1(x) # shape = [*, width, grid, grid]
|
| 610 |
+
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
|
| 611 |
+
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
| 612 |
+
|
| 613 |
+
# class embeddings and positional embeddings
|
| 614 |
+
x = torch.cat([_expand_token(self.class_embedding, x.shape[0]).to(x.dtype), x], dim=1)
|
| 615 |
+
# shape = [*, grid ** 2 + 1, width]
|
| 616 |
+
x = x + self.positional_embedding.to(x.dtype)
|
| 617 |
+
|
| 618 |
+
x = self.patch_dropout(x)
|
| 619 |
+
x = self.ln_pre(x)
|
| 620 |
+
x = self.transformer(x)
|
| 621 |
+
|
| 622 |
+
if self.attn_pool is not None:
|
| 623 |
+
if self.attn_pool_contrastive is not None:
|
| 624 |
+
# This is untested, WIP pooling that should match paper
|
| 625 |
+
x = self.ln_post(x) # TBD LN first or separate one after each pool?
|
| 626 |
+
tokens = self.attn_pool(x)
|
| 627 |
+
if self.attn_pool_type == 'parallel':
|
| 628 |
+
pooled = self.attn_pool_contrastive(x)
|
| 629 |
+
else:
|
| 630 |
+
assert self.attn_pool_type == 'cascade'
|
| 631 |
+
pooled = self.attn_pool_contrastive(tokens)
|
| 632 |
+
else:
|
| 633 |
+
# this is the original OpenCLIP CoCa setup, does not match paper
|
| 634 |
+
x = self.attn_pool(x)
|
| 635 |
+
x = self.ln_post(x)
|
| 636 |
+
pooled, tokens = self._global_pool(x)
|
| 637 |
+
elif self.final_ln_after_pool:
|
| 638 |
+
pooled, tokens = self._global_pool(x)
|
| 639 |
+
pooled = self.ln_post(pooled)
|
| 640 |
+
else:
|
| 641 |
+
x = self.ln_post(x)
|
| 642 |
+
pooled, tokens = self._global_pool(x)
|
| 643 |
+
|
| 644 |
+
if self.proj is not None:
|
| 645 |
+
pooled = pooled @ self.proj
|
| 646 |
+
|
| 647 |
+
if self.output_tokens:
|
| 648 |
+
return pooled, tokens
|
| 649 |
+
|
| 650 |
+
return pooled
|
| 651 |
+
|
| 652 |
+
|
| 653 |
+
def text_global_pool(x, text: Optional[torch.Tensor] = None, pool_type: str = 'argmax'):
|
| 654 |
+
if pool_type == 'first':
|
| 655 |
+
pooled, tokens = x[:, 0], x[:, 1:]
|
| 656 |
+
elif pool_type == 'last':
|
| 657 |
+
pooled, tokens = x[:, -1], x[:, :-1]
|
| 658 |
+
elif pool_type == 'argmax':
|
| 659 |
+
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
| 660 |
+
assert text is not None
|
| 661 |
+
pooled, tokens = x[torch.arange(x.shape[0]), text.argmax(dim=-1)], x
|
| 662 |
+
else:
|
| 663 |
+
pooled = tokens = x
|
| 664 |
+
|
| 665 |
+
return pooled, tokens
|
| 666 |
+
|
| 667 |
+
|
| 668 |
+
class TextTransformer(nn.Module):
|
| 669 |
+
output_tokens: torch.jit.Final[bool]
|
| 670 |
+
|
| 671 |
+
def __init__(
|
| 672 |
+
self,
|
| 673 |
+
context_length: int = 77,
|
| 674 |
+
vocab_size: int = 49408,
|
| 675 |
+
width: int = 512,
|
| 676 |
+
heads: int = 8,
|
| 677 |
+
layers: int = 12,
|
| 678 |
+
mlp_ratio: float = 4.0,
|
| 679 |
+
ls_init_value: float = None,
|
| 680 |
+
output_dim: int = 512,
|
| 681 |
+
embed_cls: bool = False,
|
| 682 |
+
no_causal_mask: bool = False,
|
| 683 |
+
pad_id: int = 0,
|
| 684 |
+
pool_type: str = 'argmax',
|
| 685 |
+
proj_bias: bool = False,
|
| 686 |
+
act_layer: Callable = nn.GELU,
|
| 687 |
+
norm_layer: Callable = LayerNorm,
|
| 688 |
+
output_tokens: bool = False,
|
| 689 |
+
):
|
| 690 |
+
super().__init__()
|
| 691 |
+
assert pool_type in ('first', 'last', 'argmax', 'none')
|
| 692 |
+
self.output_tokens = output_tokens
|
| 693 |
+
self.num_pos = self.context_length = context_length
|
| 694 |
+
self.vocab_size = vocab_size
|
| 695 |
+
self.width = width
|
| 696 |
+
self.output_dim = output_dim
|
| 697 |
+
self.heads = heads
|
| 698 |
+
self.pad_id = pad_id
|
| 699 |
+
self.pool_type = pool_type
|
| 700 |
+
|
| 701 |
+
self.token_embedding = nn.Embedding(vocab_size, width)
|
| 702 |
+
if embed_cls:
|
| 703 |
+
self.cls_emb = nn.Parameter(torch.empty(width))
|
| 704 |
+
self.num_pos += 1
|
| 705 |
+
else:
|
| 706 |
+
self.cls_emb = None
|
| 707 |
+
self.positional_embedding = nn.Parameter(torch.empty(self.num_pos, width))
|
| 708 |
+
self.transformer = Transformer(
|
| 709 |
+
width=width,
|
| 710 |
+
layers=layers,
|
| 711 |
+
heads=heads,
|
| 712 |
+
mlp_ratio=mlp_ratio,
|
| 713 |
+
ls_init_value=ls_init_value,
|
| 714 |
+
act_layer=act_layer,
|
| 715 |
+
norm_layer=norm_layer,
|
| 716 |
+
)
|
| 717 |
+
self.ln_final = norm_layer(width)
|
| 718 |
+
|
| 719 |
+
if no_causal_mask:
|
| 720 |
+
self.attn_mask = None
|
| 721 |
+
else:
|
| 722 |
+
self.register_buffer('attn_mask', self.build_causal_mask(), persistent=False)
|
| 723 |
+
|
| 724 |
+
if proj_bias:
|
| 725 |
+
self.text_projection = nn.Linear(width, output_dim)
|
| 726 |
+
else:
|
| 727 |
+
self.text_projection = nn.Parameter(torch.empty(width, output_dim))
|
| 728 |
+
|
| 729 |
+
self.init_parameters()
|
| 730 |
+
|
| 731 |
+
def init_parameters(self):
|
| 732 |
+
nn.init.normal_(self.token_embedding.weight, std=0.02)
|
| 733 |
+
nn.init.normal_(self.positional_embedding, std=0.01)
|
| 734 |
+
if self.cls_emb is not None:
|
| 735 |
+
nn.init.normal_(self.cls_emb, std=0.01)
|
| 736 |
+
|
| 737 |
+
proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
|
| 738 |
+
attn_std = self.transformer.width ** -0.5
|
| 739 |
+
fc_std = (2 * self.transformer.width) ** -0.5
|
| 740 |
+
for block in self.transformer.resblocks:
|
| 741 |
+
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
|
| 742 |
+
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
|
| 743 |
+
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
|
| 744 |
+
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
|
| 745 |
+
|
| 746 |
+
if self.text_projection is not None:
|
| 747 |
+
if isinstance(self.text_projection, nn.Linear):
|
| 748 |
+
nn.init.normal_(self.text_projection.weight, std=self.transformer.width ** -0.5)
|
| 749 |
+
if self.text_projection.bias is not None:
|
| 750 |
+
nn.init.zeros_(self.text_projection.bias)
|
| 751 |
+
else:
|
| 752 |
+
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
|
| 753 |
+
|
| 754 |
+
@torch.jit.ignore
|
| 755 |
+
def set_grad_checkpointing(self, enable=True):
|
| 756 |
+
self.transformer.grad_checkpointing = enable
|
| 757 |
+
|
| 758 |
+
def build_causal_mask(self):
|
| 759 |
+
# lazily create causal attention mask, with full attention between the tokens
|
| 760 |
+
# pytorch uses additive attention mask; fill with -inf
|
| 761 |
+
mask = torch.empty(self.num_pos, self.num_pos)
|
| 762 |
+
mask.fill_(float("-inf"))
|
| 763 |
+
mask.triu_(1) # zero out the lower diagonal
|
| 764 |
+
return mask
|
| 765 |
+
|
| 766 |
+
def build_cls_mask(self, text, cast_dtype: torch.dtype):
|
| 767 |
+
cls_mask = (text != self.pad_id).unsqueeze(1)
|
| 768 |
+
cls_mask = F.pad(cls_mask, (1, 0, cls_mask.shape[2], 0), value=True)
|
| 769 |
+
additive_mask = torch.empty(cls_mask.shape, dtype=cast_dtype, device=cls_mask.device)
|
| 770 |
+
additive_mask.fill_(0)
|
| 771 |
+
additive_mask.masked_fill_(~cls_mask, float("-inf"))
|
| 772 |
+
additive_mask = torch.repeat_interleave(additive_mask, self.heads, 0)
|
| 773 |
+
return additive_mask
|
| 774 |
+
|
| 775 |
+
def forward(self, text):
|
| 776 |
+
cast_dtype = self.transformer.get_cast_dtype()
|
| 777 |
+
seq_len = text.shape[1]
|
| 778 |
+
|
| 779 |
+
x = self.token_embedding(text).to(cast_dtype) # [batch_size, n_ctx, d_model]
|
| 780 |
+
attn_mask = self.attn_mask
|
| 781 |
+
if self.cls_emb is not None:
|
| 782 |
+
seq_len += 1
|
| 783 |
+
x = torch.cat([x, _expand_token(self.cls_emb, x.shape[0])], dim=1)
|
| 784 |
+
cls_mask = self.build_cls_mask(text, cast_dtype)
|
| 785 |
+
if attn_mask is not None:
|
| 786 |
+
attn_mask = attn_mask[None, :seq_len, :seq_len] + cls_mask[:, :seq_len, :seq_len]
|
| 787 |
+
|
| 788 |
+
x = x + self.positional_embedding[:seq_len].to(cast_dtype)
|
| 789 |
+
x = self.transformer(x, attn_mask=attn_mask)
|
| 790 |
+
|
| 791 |
+
# x.shape = [batch_size, n_ctx, transformer.width]
|
| 792 |
+
if self.cls_emb is not None:
|
| 793 |
+
# presence of appended cls embed (CoCa) overrides pool_type, always take last token
|
| 794 |
+
pooled, tokens = text_global_pool(x, pool_type='last')
|
| 795 |
+
pooled = self.ln_final(pooled) # final LN applied after pooling in this case
|
| 796 |
+
else:
|
| 797 |
+
x = self.ln_final(x)
|
| 798 |
+
pooled, tokens = text_global_pool(x, text, pool_type=self.pool_type)
|
| 799 |
+
|
| 800 |
+
if self.text_projection is not None:
|
| 801 |
+
if isinstance(self.text_projection, nn.Linear):
|
| 802 |
+
pooled = self.text_projection(pooled)
|
| 803 |
+
else:
|
| 804 |
+
pooled = pooled @ self.text_projection
|
| 805 |
+
|
| 806 |
+
if self.output_tokens:
|
| 807 |
+
return pooled, tokens
|
| 808 |
+
|
| 809 |
+
return pooled
|
| 810 |
+
|
| 811 |
+
|
| 812 |
+
class MultimodalTransformer(Transformer):
|
| 813 |
+
def __init__(
|
| 814 |
+
self,
|
| 815 |
+
width: int,
|
| 816 |
+
layers: int,
|
| 817 |
+
heads: int,
|
| 818 |
+
context_length: int = 77,
|
| 819 |
+
mlp_ratio: float = 4.0,
|
| 820 |
+
ls_init_value: float = None,
|
| 821 |
+
act_layer: Callable = nn.GELU,
|
| 822 |
+
norm_layer: Callable = LayerNorm,
|
| 823 |
+
output_dim: int = 512,
|
| 824 |
+
batch_first: bool = True,
|
| 825 |
+
):
|
| 826 |
+
super().__init__(
|
| 827 |
+
width=width,
|
| 828 |
+
layers=layers,
|
| 829 |
+
heads=heads,
|
| 830 |
+
mlp_ratio=mlp_ratio,
|
| 831 |
+
ls_init_value=ls_init_value,
|
| 832 |
+
act_layer=act_layer,
|
| 833 |
+
norm_layer=norm_layer,
|
| 834 |
+
batch_first=batch_first,
|
| 835 |
+
)
|
| 836 |
+
self.context_length = context_length
|
| 837 |
+
self.cross_attn = nn.ModuleList([
|
| 838 |
+
ResidualAttentionBlock(
|
| 839 |
+
width,
|
| 840 |
+
heads,
|
| 841 |
+
mlp_ratio,
|
| 842 |
+
ls_init_value=ls_init_value,
|
| 843 |
+
act_layer=act_layer,
|
| 844 |
+
norm_layer=norm_layer,
|
| 845 |
+
is_cross_attention=True,
|
| 846 |
+
batch_first=batch_first,
|
| 847 |
+
)
|
| 848 |
+
for _ in range(layers)
|
| 849 |
+
])
|
| 850 |
+
|
| 851 |
+
self.register_buffer('attn_mask', self.build_attention_mask(), persistent=False)
|
| 852 |
+
|
| 853 |
+
self.ln_final = norm_layer(width)
|
| 854 |
+
self.text_projection = nn.Parameter(torch.empty(width, output_dim))
|
| 855 |
+
|
| 856 |
+
def init_parameters(self):
|
| 857 |
+
proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
|
| 858 |
+
attn_std = self.transformer.width ** -0.5
|
| 859 |
+
fc_std = (2 * self.transformer.width) ** -0.5
|
| 860 |
+
for block in self.transformer.resblocks:
|
| 861 |
+
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
|
| 862 |
+
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
|
| 863 |
+
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
|
| 864 |
+
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
|
| 865 |
+
for block in self.transformer.cross_attn:
|
| 866 |
+
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
|
| 867 |
+
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
|
| 868 |
+
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
|
| 869 |
+
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
|
| 870 |
+
|
| 871 |
+
if self.text_projection is not None:
|
| 872 |
+
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
|
| 873 |
+
|
| 874 |
+
def build_attention_mask(self):
|
| 875 |
+
# lazily create causal attention mask, with full attention between the tokens
|
| 876 |
+
# pytorch uses additive attention mask; fill with -inf
|
| 877 |
+
mask = torch.empty(self.context_length, self.context_length)
|
| 878 |
+
mask.fill_(float("-inf"))
|
| 879 |
+
mask.triu_(1) # zero out the lower diagonal
|
| 880 |
+
return mask
|
| 881 |
+
|
| 882 |
+
def forward(self, image_embs, text_embs):
|
| 883 |
+
seq_len = text_embs.shape[1]
|
| 884 |
+
if not self.batch_first:
|
| 885 |
+
image_embs = image_embs.permute(1, 0, 2) # NLD -> LND
|
| 886 |
+
text_embs = text_embs.permute(1, 0, 2) # NLD -> LND
|
| 887 |
+
|
| 888 |
+
for resblock, cross_attn in zip(self.resblocks, self.cross_attn):
|
| 889 |
+
if self.grad_checkpointing and not torch.jit.is_scripting():
|
| 890 |
+
# TODO: handle kwargs https://github.com/pytorch/pytorch/issues/79887#issuecomment-1161758372
|
| 891 |
+
text_embs = checkpoint(resblock, text_embs, None, None, self.attn_mask[:seq_len, :seq_len])
|
| 892 |
+
text_embs = checkpoint(cross_attn, text_embs, image_embs, image_embs, None)
|
| 893 |
+
else:
|
| 894 |
+
text_embs = resblock(text_embs, attn_mask=self.attn_mask[:seq_len, :seq_len])
|
| 895 |
+
text_embs = cross_attn(text_embs, k_x=image_embs, v_x=image_embs)
|
| 896 |
+
|
| 897 |
+
if not self.batch_first:
|
| 898 |
+
text_embs = text_embs.permute(1, 0, 2) # LND -> NLD
|
| 899 |
+
|
| 900 |
+
out = self.ln_final(text_embs)
|
| 901 |
+
if self.text_projection is not None:
|
| 902 |
+
out = out @ self.text_projection
|
| 903 |
+
|
| 904 |
+
return out
|
| 905 |
+
|
| 906 |
+
@torch.jit.ignore
|
| 907 |
+
def set_grad_checkpointing(self, enable=True):
|
| 908 |
+
self.grad_checkpointing = enable
|
src/open_clip/utils.py
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from itertools import repeat
|
| 2 |
+
import collections.abc
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
from torch import nn as nn
|
| 6 |
+
from torchvision.ops.misc import FrozenBatchNorm2d
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def freeze_batch_norm_2d(module, module_match={}, name=''):
|
| 10 |
+
"""
|
| 11 |
+
Converts all `BatchNorm2d` and `SyncBatchNorm` layers of provided module into `FrozenBatchNorm2d`. If `module` is
|
| 12 |
+
itself an instance of either `BatchNorm2d` or `SyncBatchNorm`, it is converted into `FrozenBatchNorm2d` and
|
| 13 |
+
returned. Otherwise, the module is walked recursively and submodules are converted in place.
|
| 14 |
+
|
| 15 |
+
Args:
|
| 16 |
+
module (torch.nn.Module): Any PyTorch module.
|
| 17 |
+
module_match (dict): Dictionary of full module names to freeze (all if empty)
|
| 18 |
+
name (str): Full module name (prefix)
|
| 19 |
+
|
| 20 |
+
Returns:
|
| 21 |
+
torch.nn.Module: Resulting module
|
| 22 |
+
|
| 23 |
+
Inspired by https://github.com/pytorch/pytorch/blob/a5895f85be0f10212791145bfedc0261d364f103/torch/nn/modules/batchnorm.py#L762
|
| 24 |
+
"""
|
| 25 |
+
res = module
|
| 26 |
+
is_match = True
|
| 27 |
+
if module_match:
|
| 28 |
+
is_match = name in module_match
|
| 29 |
+
if is_match and isinstance(module, (nn.modules.batchnorm.BatchNorm2d, nn.modules.batchnorm.SyncBatchNorm)):
|
| 30 |
+
res = FrozenBatchNorm2d(module.num_features)
|
| 31 |
+
res.num_features = module.num_features
|
| 32 |
+
res.affine = module.affine
|
| 33 |
+
if module.affine:
|
| 34 |
+
res.weight.data = module.weight.data.clone().detach()
|
| 35 |
+
res.bias.data = module.bias.data.clone().detach()
|
| 36 |
+
res.running_mean.data = module.running_mean.data
|
| 37 |
+
res.running_var.data = module.running_var.data
|
| 38 |
+
res.eps = module.eps
|
| 39 |
+
else:
|
| 40 |
+
for child_name, child in module.named_children():
|
| 41 |
+
full_child_name = '.'.join([name, child_name]) if name else child_name
|
| 42 |
+
new_child = freeze_batch_norm_2d(child, module_match, full_child_name)
|
| 43 |
+
if new_child is not child:
|
| 44 |
+
res.add_module(child_name, new_child)
|
| 45 |
+
return res
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
# From PyTorch internals
|
| 49 |
+
def _ntuple(n):
|
| 50 |
+
def parse(x):
|
| 51 |
+
if isinstance(x, collections.abc.Iterable):
|
| 52 |
+
return x
|
| 53 |
+
return tuple(repeat(x, n))
|
| 54 |
+
return parse
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
to_1tuple = _ntuple(1)
|
| 58 |
+
to_2tuple = _ntuple(2)
|
| 59 |
+
to_3tuple = _ntuple(3)
|
| 60 |
+
to_4tuple = _ntuple(4)
|
| 61 |
+
to_ntuple = lambda n, x: _ntuple(n)(x)
|
| 62 |
+
|
| 63 |
+
# Replaces all linear layers with linear_replacement
|
| 64 |
+
# TODO: add int8 support for other linear layers including attn and convnets
|
| 65 |
+
def replace_linear(model, linear_replacement, include_modules=['c_fc', 'c_proj'], copy_weights=True):
|
| 66 |
+
for name, module in model.named_children():
|
| 67 |
+
if len(list(module.children())) > 0:
|
| 68 |
+
replace_linear(module, linear_replacement, include_modules, copy_weights)
|
| 69 |
+
|
| 70 |
+
if isinstance(module, torch.nn.Linear) and name in include_modules:
|
| 71 |
+
old_module = model._modules[name]
|
| 72 |
+
model._modules[name] = linear_replacement(
|
| 73 |
+
module.in_features,
|
| 74 |
+
module.out_features,
|
| 75 |
+
module.bias is not None,
|
| 76 |
+
)
|
| 77 |
+
if copy_weights:
|
| 78 |
+
model._modules[name].weight.data.copy_(old_module.weight.data)
|
| 79 |
+
if model._modules[name].bias is not None:
|
| 80 |
+
model._modules[name].bias.data.copy_(old_module.bias)
|
| 81 |
+
|
| 82 |
+
return model
|
| 83 |
+
|
| 84 |
+
def convert_int8_model_to_inference_mode(model):
|
| 85 |
+
for m in model.modules():
|
| 86 |
+
if hasattr(m, 'prepare_for_eval'):
|
| 87 |
+
int8_original_dtype = m.weight.dtype
|
| 88 |
+
m.prepare_for_eval()
|
| 89 |
+
m.int8_original_dtype = int8_original_dtype
|
src/open_clip/version.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
__version__ = '2.26.1'
|