Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# 🌾 LLaMA Late Blight Classifier (Huancavelica, Peru)
|
| 2 |
|
| 3 |
This model is a fine-tuned classifier based on `openlm-research/open_llama_3b`, trained to predict **potato late blight risk levels** (`Bajo`, `Moderado`, `Alto`) in the highlands of Huancavelica, Peru. It uses environmental inputs (temperature, humidity, precipitation) and crop variety metadata to output discrete classifications.
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: [es]
|
| 3 |
+
license: mit
|
| 4 |
+
tags:
|
| 5 |
+
- text-classification
|
| 6 |
+
- agriculture
|
| 7 |
+
- climate
|
| 8 |
+
- potato
|
| 9 |
+
- Peru
|
| 10 |
+
- Huancavelica
|
| 11 |
+
- LLaMA
|
| 12 |
+
- environmental-prediction
|
| 13 |
+
model-index:
|
| 14 |
+
- name: llama-lateblight-classifier
|
| 15 |
+
results:
|
| 16 |
+
- task:
|
| 17 |
+
type: text-classification
|
| 18 |
+
name: Potato Late Blight Risk Classification
|
| 19 |
+
dataset:
|
| 20 |
+
name: Huancavelica Late Blight Benchmark (Balanced)
|
| 21 |
+
type: tabular
|
| 22 |
+
metrics:
|
| 23 |
+
- name: Accuracy
|
| 24 |
+
type: accuracy
|
| 25 |
+
value: 0.97
|
| 26 |
+
- name: F1 (macro)
|
| 27 |
+
type: f1
|
| 28 |
+
value: 0.97
|
| 29 |
+
- name: Precision
|
| 30 |
+
type: precision
|
| 31 |
+
value: 0.97
|
| 32 |
+
- name: Recall
|
| 33 |
+
type: recall
|
| 34 |
+
value: 0.97
|
| 35 |
+
pipeline_tag: text-classification
|
| 36 |
+
library_name: transformers
|
| 37 |
+
---
|
| 38 |
+
|
| 39 |
# 🌾 LLaMA Late Blight Classifier (Huancavelica, Peru)
|
| 40 |
|
| 41 |
This model is a fine-tuned classifier based on `openlm-research/open_llama_3b`, trained to predict **potato late blight risk levels** (`Bajo`, `Moderado`, `Alto`) in the highlands of Huancavelica, Peru. It uses environmental inputs (temperature, humidity, precipitation) and crop variety metadata to output discrete classifications.
|