|
|
|
|
|
!pip install datasets huggingface_hub
|
|
import torch
|
|
from datasets import load_dataset
|
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AdamW
|
|
from torch.utils.data import DataLoader
|
|
from sklearn.metrics import accuracy_score, f1_score
|
|
|
|
|
|
|
|
sst2 = load_dataset("stanfordnlp/sst2")
|
|
imdb = load_dataset("stanfordnlp/imdb")
|
|
|
|
def data_preprocessor_sst2(data, token):
|
|
return data.map(lambda x: token(x['sentence'], truncation = True, padding = 'max_length', max_length = 128), batched = True)
|
|
def data_preprocessor_imdb(data, token):
|
|
return data.map(lambda x: token(x['text'], truncation = True, padding = 'max_length', max_length = 128), batched = True)
|
|
|
|
|
|
|
|
token_B = AutoTokenizer.from_pretrained("bert-base-uncased")
|
|
token_DB = AutoTokenizer.from_pretrained("distilbert-base-uncased")
|
|
|
|
train_sst2 = data_preprocessor_sst2(sst2['train'], token_B)
|
|
test_sst2 = data_preprocessor_sst2(sst2['validation'], token_B)
|
|
test_imdb = data_preprocessor_imdb(imdb['test'], token_B)
|
|
|
|
|
|
|
|
train_sst2.set_format(type = 'torch', columns = ['input_ids', 'attention_mask', 'label'])
|
|
test_sst2.set_format(type = 'torch', columns = ['input_ids', 'attention_mask', 'label'])
|
|
test_imdb.set_format(type = 'torch', columns = ['input_ids', 'attention_mask', 'label'])
|
|
|
|
|
|
|
|
def data_loader(data, batch = 32):
|
|
return DataLoader(data, batch_size = batch, shuffle = True)
|
|
|
|
train_DL = data_loader(train_sst2)
|
|
test_DL = data_loader(test_sst2)
|
|
test_DL_imdb = data_loader(test_imdb)
|
|
|
|
|
|
|
|
model_B = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased", num_labels = 2)
|
|
model_DB = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased", num_labels = 2)
|
|
|
|
|
|
|
|
def model_trainer(model, data, epochs = 1):
|
|
gpu = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
model.to(gpu)
|
|
optimizer = AdamW(model.parameters(), lr = 0.00005)
|
|
model.train()
|
|
for x in range(epochs):
|
|
loss_total = 0
|
|
for y in data:
|
|
optimizer.zero_grad()
|
|
input_ids, attention_mask, labels = (y['input_ids'].to(gpu), y['attention_mask'].to(gpu), y['label'].to(gpu))
|
|
forward_info = model(input_ids, attention_mask = attention_mask, labels = labels)
|
|
forward_loss = forward_info.loss
|
|
loss_total += forward_loss.item()
|
|
forward_loss.backward()
|
|
optimizer.step()
|
|
print(f"Epoch - Loss = {loss_total / len(data)}")
|
|
return model
|
|
|
|
|
|
|
|
def model_evaluator(model, data):
|
|
model.eval()
|
|
gpu = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
model.to(gpu)
|
|
preds, trues = [], []
|
|
with torch.no_grad():
|
|
for y in data:
|
|
input_ids, attention_mask, labels = (y['input_ids'].to(gpu), y['attention_mask'].to(gpu), y['label'].to(gpu))
|
|
forward_info = model(input_ids, attention_mask = attention_mask)
|
|
forward_loss = forward_info.logits
|
|
preds.extend(torch.argmax(forward_loss, dim = 1).cpu().numpy())
|
|
trues.extend(labels.cpu().numpy())
|
|
score_acc = accuracy_score(trues, preds)
|
|
score_f1 = f1_score(trues, preds)
|
|
return score_acc, score_f1
|
|
|
|
|
|
|
|
model_B = model_trainer(model_B, train_DL)
|
|
model_DB = model_trainer(model_DB, train_DL)
|
|
|
|
|
|
|
|
bert_acc_sst2, bert_f1_sst2 = model_evaluator(model_B, test_DL)
|
|
dist_acc_sst2, dist_f1_sst2 = model_evaluator(model_DB, test_DL)
|
|
|
|
print(f"Bert Accuracy: {bert_acc_sst2}, Bert F1: {bert_f1_sst2}")
|
|
print(f"Distilbert Accuracy: {dist_acc_sst2}, Distilbert F1: {dist_f1_sst2}")
|
|
|
|
|
|
|
|
bert_acc_imdb, bert_f1_imdb = model_evaluator(model_B, test_DL_imdb)
|
|
dist_acc_imdb, dist_f1_imdb = model_evaluator(model_DB, test_DL_imdb)
|
|
|
|
print(f"Bert Accuracy: {bert_acc_imdb}, Bert F1: {bert_f1_imdb}")
|
|
print(f"Distilbert Accuracy: {dist_acc_imdb}, Distilbert F1: {dist_f1_imdb}")
|
|
|
|
|
|
|
|
def classify(sentence: str, model, token):
|
|
gpu = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
model.to(gpu)
|
|
model.eval()
|
|
inputs = token(sentence, return_tensors = "pt", truncation = True, padding = True, max_length = 128).to(gpu)
|
|
with torch.no_grad():
|
|
forward_info = model(**inputs)
|
|
pred = forward_info.logits.argmax(dim = 1).item()
|
|
return pred
|
|
|
|
|
|
|
|
sentence1 = "for all its highfalutin title and corkscrew narrative , the movie turns out to be not much more than a shaggy human tale ."
|
|
print(f"BERT Prediction: {classify(sentence1, model_B, token_B)}")
|
|
print(f"DistilBERT Prediction: {classify(sentence1, model_DB, token_DB)}")
|
|
|
|
|
|
|
|
sentence2 = "its underlying mythology is a hodgepodge of inconsistencies that pose the question : since when did dumb entertainment have to be this dumb ?"
|
|
print(f"BERT Prediction: {classify(sentence2, model_B, token_B)}")
|
|
print(f"DistilBERT Prediction: {classify(sentence2, model_DB, token_DB)}")
|
|
|
|
|
|
|
|
sentence3 = '''
|
|
the actors do n’t inhabit their roles– they ’re trapped by them ,
|
|
forced to change behavior in bizarre unjustified fashion and spout dialog that consists mostly of platitudes .
|
|
'''
|
|
print(f"BERT Prediction: {classify(sentence3, model_B, token_B)}")
|
|
print(f"DistilBERT Prediction: {classify(sentence3, model_DB, token_DB)}")
|
|
|
|
|
|
|
|
sentence4 = "an absorbing trip into the minds and motivations of people under stress as well as a keen , unsentimental look at variations on the theme of motherhood ."
|
|
print(f"BERT Prediction: {classify(sentence4, model_B, token_B)}")
|
|
print(f"DistilBERT Prediction: {classify(sentence4, model_DB, token_DB)}")
|
|
|
|
|
|
|
|
sentence5 = "one of those rare , exhilarating cinematic delights that gets even better in hindsight , as you mull over its every nuance in your mind ."
|
|
print(f"BERT Prediction: {classify(sentence5, model_B, token_B)}")
|
|
print(f"DistilBERT Prediction: {classify(sentence5, model_DB, token_DB)}") |