Update README.md
Browse files
README.md
CHANGED
@@ -4,7 +4,15 @@ base_model:
|
|
4 |
- google-bert/bert-base-uncased
|
5 |
datasets:
|
6 |
- zefang-liu/phishing-email-dataset
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
---
|
|
|
|
|
8 |
# PhishMail - BERT Model for Phishing Detection
|
9 |
|
10 |
This repository features a fine-tuned BERT model designed to detect phishing emails.
|
@@ -31,4 +39,54 @@ The model is trained to classify emails as either phishing or legitimate by anal
|
|
31 |
```bash
|
32 |
!pip install transformers torch
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
```
|
|
|
4 |
- google-bert/bert-base-uncased
|
5 |
datasets:
|
6 |
- zefang-liu/phishing-email-dataset
|
7 |
+
language:
|
8 |
+
- en
|
9 |
+
metrics:
|
10 |
+
- accuracy
|
11 |
+
tags:
|
12 |
+
- security
|
13 |
---
|
14 |
+
|
15 |
+
|
16 |
# PhishMail - BERT Model for Phishing Detection
|
17 |
|
18 |
This repository features a fine-tuned BERT model designed to detect phishing emails.
|
|
|
39 |
```bash
|
40 |
!pip install transformers torch
|
41 |
|
42 |
+
```
|
43 |
+
|
44 |
+
**Step 2:** Loading the Model:
|
45 |
+
|
46 |
+
```bash
|
47 |
+
from transformers import BertForSequenceClassification, BertTokenizer
|
48 |
+
import torch
|
49 |
+
|
50 |
+
# Specify the Hugging Face model repository name
|
51 |
+
model_name = 'jagan-raj/PhishMail'
|
52 |
+
|
53 |
+
# Load the fine-tuned BERT model for phishing detection
|
54 |
+
model = BertForSequenceClassification.from_pretrained(model_name)
|
55 |
+
|
56 |
+
# Load the corresponding tokenizer for the fine-tuned model
|
57 |
+
tokenizer = BertTokenizer.from_pretrained(model_name)
|
58 |
+
|
59 |
+
# Set the model to evaluation mode for inference
|
60 |
+
model.eval()
|
61 |
+
|
62 |
+
```
|
63 |
+
|
64 |
+
**Step 3:** Using the Model for Predictions:
|
65 |
+
|
66 |
+
```bash
|
67 |
+
# Input the email text for classification
|
68 |
+
email_text = "Your email content here"
|
69 |
+
|
70 |
+
# Tokenize and preprocess the input text
|
71 |
+
# Converts the email text into token IDs, applies truncation/padding, and creates a tensor
|
72 |
+
inputs = tokenizer(
|
73 |
+
email_text,
|
74 |
+
return_tensors="pt", # Output tensors in PyTorch format
|
75 |
+
truncation=True, # Truncate the text if it exceeds the max_length
|
76 |
+
padding='max_length' # Pad the text to the maximum sequence length
|
77 |
+
)
|
78 |
+
|
79 |
+
# Make a prediction using the model
|
80 |
+
with torch.no_grad(): # Disable gradient calculations for faster inference
|
81 |
+
outputs = model(**inputs) # Get model outputs
|
82 |
+
logits = outputs.logits # Extract raw prediction scores (logits)
|
83 |
+
predictions = torch.argmax(logits, dim=-1) # Determine the predicted class (0 or 1)
|
84 |
+
|
85 |
+
# Interpret the prediction result
|
86 |
+
# Map the prediction to its corresponding label: 1 for "Phishing", 0 for "Legitimate"
|
87 |
+
result = "This is a phishing email." if predictions.item() == 1 else "This is a legitimate email."
|
88 |
+
|
89 |
+
# Print the prediction result
|
90 |
+
print(f"Prediction: {result}")
|
91 |
+
|
92 |
```
|