File size: 2,921 Bytes
754c7bf 6782623 754c7bf 6782623 754c7bf 6782623 754c7bf 6782623 754c7bf 6782623 754c7bf 6782623 754c7bf 6782623 754c7bf 6782623 754c7bf 6782623 754c7bf 6782623 754c7bf 6782623 754c7bf 6782623 754c7bf 6782623 754c7bf 6782623 754c7bf 6782623 754c7bf 6782623 754c7bf 6782623 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
---
license: apache-2.0
base_model: facebook/wav2vec2-base-960h
tags:
- generated_from_trainer
datasets:
- ami
metrics:
- wer
model-index:
- name: 6e-5_4000eval
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: ami
type: ami
config: ihm
split: None
args: ihm
metrics:
- name: Wer
type: wer
value: 0.2470857142857143
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/jadorantes2-utep/%3Cmy-amazing-projecttokenizer6e-5eval4000%3E/runs/c41b6hhn)
# 6e-5_4000eval
This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) on the ami dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8508
- Wer: 0.2471
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- training_steps: 4000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:--------:|:----:|:---------------:|:------:|
| No log | 7.5758 | 250 | 5.4590 | 0.9995 |
| 9.3761 | 15.1515 | 500 | 3.7020 | 0.9995 |
| 9.3761 | 22.7273 | 750 | 3.0706 | 0.9995 |
| 3.2176 | 30.3030 | 1000 | 3.0517 | 0.9995 |
| 3.2176 | 37.8788 | 1250 | 1.8920 | 0.7721 |
| 2.0444 | 45.4545 | 1500 | 1.3641 | 0.3488 |
| 2.0444 | 53.0303 | 1750 | 1.1031 | 0.2779 |
| 0.8363 | 60.6061 | 2000 | 1.1269 | 0.2679 |
| 0.8363 | 68.1818 | 2250 | 1.0291 | 0.2656 |
| 0.6824 | 75.7576 | 2500 | 0.9712 | 0.2629 |
| 0.6824 | 83.3333 | 2750 | 0.8902 | 0.2619 |
| 0.5956 | 90.9091 | 3000 | 0.8432 | 0.2441 |
| 0.5956 | 98.4848 | 3250 | 0.8714 | 0.2485 |
| 0.4071 | 106.0606 | 3500 | 0.8222 | 0.2478 |
| 0.4071 | 113.6364 | 3750 | 0.8398 | 0.2501 |
| 0.4479 | 121.2121 | 4000 | 0.8508 | 0.2471 |
### Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|