File size: 3,187 Bytes
19fb693 2a534b4 19fb693 2a534b4 19fb693 2a534b4 19fb693 2a534b4 19fb693 2a534b4 19fb693 2a534b4 19fb693 2a534b4 19fb693 2a534b4 19fb693 2a534b4 19fb693 2a534b4 19fb693 2a534b4 19fb693 2a534b4 19fb693 2a534b4 19fb693 2a534b4 19fb693 2a534b4 19fb693 2a534b4 19fb693 2a534b4 19fb693 2a534b4 19fb693 2a534b4 19fb693 2a534b4 19fb693 2a534b4 19fb693 2a534b4 19fb693 2a534b4 19fb693 2a534b4 19fb693 2a534b4 19fb693 2a534b4 19fb693 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
# [ECCV 2024] VFusion3D: Learning Scalable 3D Generative Models from Video Diffusion Models
[Porject page](https://junlinhan.github.io/projects/vfusion3d.html), [Paper link](https://arxiv.org/abs/2403.12034)
VFusion3D is a large, feed-forward 3D generative model trained with a small amount of 3D data and a large volume of synthetic multi-view data. It is the first work exploring scalable 3D generative/reconstruction models as a step towards a 3D foundation.
[VFusion3D: Learning Scalable 3D Generative Models from Video Diffusion Models](https://junlinhan.github.io/projects/vfusion3d.html)<br>
[Junlin Han](https://junlinhan.github.io/), [Filippos Kokkinos](https://www.fkokkinos.com/), [Philip Torr](https://www.robots.ox.ac.uk/~phst/)<br>
GenAI, Meta and TVG, University of Oxford<br>
European Conference on Computer Vision (ECCV), 2024
## News
- [25.07.2024] Release weights and inference code for VFusion3D.
## Results and Comparisons
### 3D Generation Results
<img src='images/gif1.gif' width=950>
<img src='images/gif2.gif' width=950>
### User Study Results
<img src='images/user.png' width=950>
## Setup
### Installation
```
git clone https://github.com/facebookresearch/vfusion3d
cd vfusion3d
```
### Environment
We provide a simple installation script that, by default, sets up a conda environment with Python 3.8.19, PyTorch 2.3, and CUDA 12.1. Similar package versions should also work.
```
source install.sh
```
## Quick Start
### Pretrained Models
- Model weights are available here [Google Drive](https://drive.google.com/file/d/1b-KKSh9VquJdzmXzZBE4nKbXnbeua42X/view?usp=sharing). Please download it and put it inside ./checkpoints/
### Prepare Images
- We put some sample inputs under `assets/40_prompt_images`, which is the 40 MVDream prompt images used in the paper. Results of them are also provided under `results/40_prompt_images_provided`.
### Inference
- Run the inference script to get 3D assets.
- You may specify which form of output to generate by setting the flags `--export_video` and `--export_mesh`.
- Change `--source_path` and `--dump_path` if you want to run it on other image folders.
```
# Example usages
# Render a video
python -m lrm.inferrer --export_video --resume ./checkpoints/vfusion3dckpt
# Export mesh
python -m lrm.inferrer --export_mesh --resume ./checkpoints/vfusion3dckpt
```
## Acknowledgement
- This inference code of VFusion3D heavily borrows from [OpenLRM](https://github.com/3DTopia/OpenLRM).
## Citation
If you find this work useful, please cite us:
```
@article{han2024vfusion3d,
title={VFusion3D: Learning Scalable 3D Generative Models from Video Diffusion Models},
author={Junlin Han and Filippos Kokkinos and Philip Torr},
journal={European Conference on Computer Vision (ECCV)},
year={2024}
}
```
## License
- The majority of VFusion3D is licensed under CC-BY-NC, however portions of the project are available under separate license terms: OpenLRM as a whole is licensed under the Apache License, Version 2.0, while certain components are covered by NVIDIA's proprietary license.
- The model weights of VFusion3D is also licensed under CC-BY-NC.
|