--- license: apache-2.0 base_model: google/mt5-large tags: - generated_from_trainer model-index: - name: results results: [] --- # results This model is a fine-tuned version of [google/mt5-large](https://huggingface.co/google/mt5-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.9627 - Loc: {'precision': 0.07002967359050445, 'recall': 0.13817330210772832, 'f1': 0.09294998030720757, 'number': 854} - Org: {'precision': 0.06141439205955335, 'recall': 0.1523076923076923, 'f1': 0.08753315649867373, 'number': 650} - Per: {'precision': 0.030874785591766724, 'recall': 0.07741935483870968, 'f1': 0.04414469650521153, 'number': 465} - Overall Precision: 0.0567 - Overall Recall: 0.1285 - Overall F1: 0.0787 - Overall Accuracy: 0.3287 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Loc | Org | Per | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 3.8187 | 2.0 | 10 | 3.1219 | {'precision': 0.06360022714366836, 'recall': 0.13114754098360656, 'f1': 0.08565965583173997, 'number': 854} | {'precision': 0.05763688760806916, 'recall': 0.15384615384615385, 'f1': 0.08385744234800839, 'number': 650} | {'precision': 0.027879677182685254, 'recall': 0.08172043010752689, 'f1': 0.04157549234135668, 'number': 465} | 0.0515 | 0.1270 | 0.0732 | 0.2983 | | 3.2942 | 4.0 | 20 | 2.9627 | {'precision': 0.07002967359050445, 'recall': 0.13817330210772832, 'f1': 0.09294998030720757, 'number': 854} | {'precision': 0.06141439205955335, 'recall': 0.1523076923076923, 'f1': 0.08753315649867373, 'number': 650} | {'precision': 0.030874785591766724, 'recall': 0.07741935483870968, 'f1': 0.04414469650521153, 'number': 465} | 0.0567 | 0.1285 | 0.0787 | 0.3287 | ### Framework versions - Transformers 4.39.3 - Pytorch 1.11.0a0+17540c5 - Datasets 2.20.0 - Tokenizers 0.15.2