End of training
Browse files
README.md
CHANGED
@@ -15,14 +15,14 @@ should probably proofread and complete it, then remove this comment. -->
|
|
15 |
|
16 |
This model is a fine-tuned version of [google/mt5-large](https://huggingface.co/google/mt5-large) on an unknown dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
-
- Loss:
|
19 |
-
- Loc: {'precision': 0.
|
20 |
-
- Org: {'precision': 0.
|
21 |
-
- Per: {'precision': 0.
|
22 |
-
- Overall Precision: 0.
|
23 |
-
- Overall Recall: 0.
|
24 |
-
- Overall F1: 0.
|
25 |
-
- Overall Accuracy: 0.
|
26 |
|
27 |
## Model description
|
28 |
|
@@ -47,14 +47,14 @@ The following hyperparameters were used during training:
|
|
47 |
- seed: 42
|
48 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
- lr_scheduler_type: linear
|
50 |
-
- num_epochs:
|
51 |
|
52 |
### Training results
|
53 |
|
54 |
-
| Training Loss | Epoch | Step
|
55 |
-
|
56 |
-
|
|
57 |
-
|
|
58 |
|
59 |
|
60 |
### Framework versions
|
|
|
15 |
|
16 |
This model is a fine-tuned version of [google/mt5-large](https://huggingface.co/google/mt5-large) on an unknown dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.5622
|
19 |
+
- Loc: {'precision': 0.9222857142857143, 'recall': 0.9449648711943794, 'f1': 0.9334875650665124, 'number': 854}
|
20 |
+
- Org: {'precision': 0.8973561430793157, 'recall': 0.8876923076923077, 'f1': 0.8924980665119876, 'number': 650}
|
21 |
+
- Per: {'precision': 0.9014373716632443, 'recall': 0.9440860215053763, 'f1': 0.9222689075630252, 'number': 465}
|
22 |
+
- Overall Precision: 0.9092
|
23 |
+
- Overall Recall: 0.9259
|
24 |
+
- Overall F1: 0.9175
|
25 |
+
- Overall Accuracy: 0.9582
|
26 |
|
27 |
## Model description
|
28 |
|
|
|
47 |
- seed: 42
|
48 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
- lr_scheduler_type: linear
|
50 |
+
- num_epochs: 20
|
51 |
|
52 |
### Training results
|
53 |
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Loc | Org | Per | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
55 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
56 |
+
| 0.1729 | 10.0 | 5000 | 0.4248 | {'precision': 0.9111361079865017, 'recall': 0.9484777517564403, 'f1': 0.9294320137693631, 'number': 854} | {'precision': 0.9027113237639554, 'recall': 0.8707692307692307, 'f1': 0.8864526233359435, 'number': 650} | {'precision': 0.9010309278350516, 'recall': 0.9397849462365592, 'f1': 0.92, 'number': 465} | 0.9060 | 0.9208 | 0.9134 | 0.9584 |
|
57 |
+
| 0.0068 | 20.0 | 10000 | 0.5622 | {'precision': 0.9222857142857143, 'recall': 0.9449648711943794, 'f1': 0.9334875650665124, 'number': 854} | {'precision': 0.8973561430793157, 'recall': 0.8876923076923077, 'f1': 0.8924980665119876, 'number': 650} | {'precision': 0.9014373716632443, 'recall': 0.9440860215053763, 'f1': 0.9222689075630252, 'number': 465} | 0.9092 | 0.9259 | 0.9175 | 0.9582 |
|
58 |
|
59 |
|
60 |
### Framework versions
|