--- license: apache-2.0 base_model: google/mt5-large tags: - generated_from_trainer model-index: - name: ner_cs results: [] --- # ner_cs This model is a fine-tuned version of [google/mt5-large](https://huggingface.co/google/mt5-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5017 - Loc: {'precision': 0.8522895125553914, 'recall': 0.9058084772370487, 'f1': 0.878234398782344, 'number': 637} - Org: {'precision': 0.8361702127659575, 'recall': 0.8488120950323974, 'f1': 0.8424437299035369, 'number': 463} - Per: {'precision': 0.9230769230769231, 'recall': 0.9737470167064439, 'f1': 0.9477351916376306, 'number': 419} - Overall Precision: 0.8672 - Overall Recall: 0.9072 - Overall F1: 0.8867 - Overall Accuracy: 0.9365 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Loc | Org | Per | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.2192 | 5.71 | 5000 | 0.2824 | {'precision': 0.8384728340675477, 'recall': 0.8963893249607535, 'f1': 0.8664643399089529, 'number': 637} | {'precision': 0.808641975308642, 'recall': 0.8488120950323974, 'f1': 0.8282402528977871, 'number': 463} | {'precision': 0.9325581395348838, 'recall': 0.9570405727923628, 'f1': 0.944640753828033, 'number': 419} | 0.8547 | 0.8986 | 0.8761 | 0.9363 | | 0.0244 | 11.43 | 10000 | 0.4134 | {'precision': 0.8622754491017964, 'recall': 0.9042386185243328, 'f1': 0.8827586206896552, 'number': 637} | {'precision': 0.841991341991342, 'recall': 0.8401727861771058, 'f1': 0.8410810810810811, 'number': 463} | {'precision': 0.920814479638009, 'recall': 0.9713603818615751, 'f1': 0.9454123112659697, 'number': 419} | 0.8728 | 0.9032 | 0.8877 | 0.9370 | | 0.0066 | 17.14 | 15000 | 0.5017 | {'precision': 0.8522895125553914, 'recall': 0.9058084772370487, 'f1': 0.878234398782344, 'number': 637} | {'precision': 0.8361702127659575, 'recall': 0.8488120950323974, 'f1': 0.8424437299035369, 'number': 463} | {'precision': 0.9230769230769231, 'recall': 0.9737470167064439, 'f1': 0.9477351916376306, 'number': 419} | 0.8672 | 0.9072 | 0.8867 | 0.9365 | ### Framework versions - Transformers 4.39.3 - Pytorch 1.11.0a0+17540c5 - Datasets 2.20.0 - Tokenizers 0.15.2