File size: 1,618 Bytes
c43784c
ce8a8b3
c43784c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13caa35
 
 
c43784c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13caa35
 
c43784c
 
 
13caa35
c43784c
 
 
 
 
13caa35
 
c43784c
 
 
 
 
 
 
ce8a8b3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
library_name: transformers
license: apache-2.0
base_model: deepvk/RuModernBERT-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: modernbert-spam-classifier
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# modernbert-spam-classifier

This model is a fine-tuned version of [deepvk/RuModernBERT-base](https://huggingface.co/deepvk/RuModernBERT-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0236
- Accuracy: 0.9933
- F1: 0.9932

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 750
- eval_batch_size: 750
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.0408        | 1.0   | 514  | 0.0242          | 0.9929   | 0.9929 |
| 0.0243        | 2.0   | 1028 | 0.0236          | 0.9933   | 0.9932 |


### Framework versions

- Transformers 4.53.0
- Pytorch 2.7.1+cu126
- Datasets 3.6.0
- Tokenizers 0.21.2