import gradio as gr import numpy as np from PIL import Image import os # Simplified category index CATEGORY_INDEX = { 1: {'id': 1, 'name': 'face'}, 2: {'id': 2, 'name': 'red_tile'}, 3: {'id': 3, 'name': 'white_tile'}, 4: {'id': 4, 'name': 'blue_tile'}, 5: {'id': 5, 'name': 'orange_tile'}, 6: {'id': 6, 'name': 'green_tile'}, 7: {'id': 7, 'name': 'yellow_tile'} } def predict_image(image): """ Make predictions on input image - Demo version """ if image is None: return "Please upload an image", None try: # Convert to PIL image if needed if isinstance(image, np.ndarray): image = Image.fromarray(image) # Get image information width, height = image.size # Demo response since model is not trained yet result_text = f"""🎲 Rubik's Cube Analysis Results 📊 Image Information: - Dimensions: {width} × {height} pixels - Format: {getattr(image, 'format', 'PIL Image')} 🔍 Detection Status: ✅ Image uploaded successfully ✅ Image format is valid ⚠️ AI model is currently in development 📝 Demo Mode: This is a preview of the Rubik's cube recognition system. The complete RetinaNet model will detect: 🎯 Target Detection Classes: - Cube faces - Red tiles - White tiles - Blue tiles - Orange tiles - Green tiles - Yellow tiles 🚀 Coming Soon: - Real-time object detection - Bounding box visualization - Confidence scores - 3D cube state analysis """ return result_text, image except Exception as e: error_msg = f"Error processing image: {str(e)}\n\nThis is a demo version." return error_msg, image def create_demo(): """Create the Gradio interface""" with gr.Blocks( title="🎲 Rubik's Cube Recognition System", theme=gr.themes.Soft() ) as demo: gr.HTML("""
Deep Learning-based Rubik's Cube Detection using RetinaNet Architecture
🔬 Technology Stack: TensorFlow • RetinaNet • SpineNet-49 • Gradio
📧 Contact: @itsyuimorii