ppo-LunarLander-v2 / config.json
itsmehyperbee's picture
Pushed LunarLander trained model/agent
10f6fcc verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x781d61c1c160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x781d61c1c1f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x781d61c1c280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x781d61c1c310>", "_build": "<function ActorCriticPolicy._build at 0x781d61c1c3a0>", "forward": "<function ActorCriticPolicy.forward at 0x781d61c1c430>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x781d61c1c4c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x781d61c1c550>", "_predict": "<function ActorCriticPolicy._predict at 0x781d61c1c5e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x781d61c1c670>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x781d61c1c700>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x781d61c1c790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x781d61d92380>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1731255875864032328, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM14hjtxgAi7JUdevCuWjjyMWUg8qKN2vQAAgD8AAIA/gKQLPY/qRrqPV6u7a1XPOM62CTsJ3zw6AACAPwAAgD+tsSo+YXyJP0nGoT6DqcS+pBx1PgiUEz4AAAAAAAAAAGYKbLxcF1u6G1P9u7BKTjZVNC+7zKi5tQAAgD8AAIA/zXzbvClgHbqUhpE64gH0tskEqrvEMaq5AACAPwAAgD8ze+m7e0aNur1f1zv5Go43L8JCus2xazYAAIA/AACAP2am5bpcsxm6RH6fu57lCDcqpLa54MF7tgAAgD8AAIA/eg9Cvu7x8j7u2Gk+vqlVvhjSPTvCyHM9AAAAAAAAAADNzJi4S4jWPYA3Iz4WOX2+6llHPdPiQb0AAAAAAAAAADNHhruPzhG6qL8ZvJo+ODPS6Rc5AgdUswAAgD8AAIA/AInDPPYsebr7uk+7AMattkvKKzmoKXM6AACAPwAAgD8AQPg8jzJTugCIITy6gHu1OXwsux8FgLQAAIA/AACAP8roXL4raUk/Yo8sPr03qL54yzO8VAW6PQAAAAAAAAAAjYW/vcbCEj/e3dk9Iut3vpl41TtwWWo9AAAAAAAAAAAaSXo9jx5JuqGKhDtdeT44AvzIuWq0MLoAAIA/AACAPyZcFj68Dvg+tMMsveZAlr5D6uk8TYIjvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGjGwRwqAjKMAWyUTegDjAF0lEdAklyc0+C9RXV9lChoBkdAMvRVENOM2mgHS8hoCEdAkl+QmJFb3XV9lChoBkdAYi7SH/Lkj2gHTegDaAhHQJJlBPxhDw91fZQoaAZHQGVWJFCswL5oB03oA2gIR0CSZZchC+lCdX2UKGgGR0BgbsjgQ6IWaAdN6ANoCEdAknMnqJMxoXV9lChoBkdAZfxg62fCh2gHTegDaAhHQJJ0aeiBXjl1fZQoaAZHQGUNss6JZW9oB03oA2gIR0CSddamoBJadX2UKGgGR0Bly4WHk92YaAdN6ANoCEdAknd+0CzTnnV9lChoBkdAZGBIOpbUw2gHTegDaAhHQJJ56XgLqlh1fZQoaAZHQGF6K814xDdoB03oA2gIR0CSfZIBBAv+dX2UKGgGR0BpUbSJCSieaAdN6ANoCEdAkn7jHsC1Z3V9lChoBkdAYJW1x82Ji2gHTegDaAhHQJKGIj7hvR91fZQoaAZHQGHuWE0zj3poB03oA2gIR0CShmCCjDbbdX2UKGgGR0BlA/aWX1J2aAdN6ANoCEdAkoZzBEa2nnV9lChoBkdAYiZ5nlGPP2gHTegDaAhHQJKkdeHBUJh1fZQoaAZHQF3aNnXd0q9oB03oA2gIR0CSpxuB+WnkdX2UKGgGR0BeS1He7+UAaAdN6ANoCEdAkrFyDAaegHV9lChoBkdAYX+GrS3LFGgHTegDaAhHQJK0O8mKIi11fZQoaAZHQGUD5DzAeq9oB03oA2gIR0CSuUJ9AooedX2UKGgGR0BgUT15B1LbaAdN6ANoCEdAkrnMcdYGMXV9lChoBkdAYSURywOe8WgHTegDaAhHQJLD/9jwx351fZQoaAZHQGXooo/iYLNoB03oA2gIR0CSxTv3ai9JdX2UKGgGR0BmYkKJEYwZaAdN6ANoCEdAksaMl1KXfXV9lChoBkdAZDI3OObRW2gHTegDaAhHQJLIIWJrLyN1fZQoaAZHQF8BQ/oq0+loB03oA2gIR0CSyluFHrhSdX2UKGgGR0BkcuB4D9wWaAdN6ANoCEdAks3DnvDxb3V9lChoBkdAZXwiyprDZWgHTegDaAhHQJLPDDTBqKx1fZQoaAZHQGBwyYoiLVFoB03oA2gIR0CS2BCU5dWydX2UKGgGR0BkyJPj4pMIaAdN6ANoCEdAkthhCtzS1HV9lChoBkdAYxzJ8OTaCmgHTegDaAhHQJLYejN6gNB1fZQoaAZHQE9gvTPSlWRoB0vVaAhHQJLv2D28IzF1fZQoaAZHQGQ/c2rGR3hoB03oA2gIR0CS9PAIY3vQdX2UKGgGR0Bh6gdXDFZQaAdN6ANoCEdAkvbQXEZR9HV9lChoBkdAYmSRHww0wmgHTegDaAhHQJMAa7+T/yZ1fZQoaAZHQGC25DzAeq9oB03oA2gIR0CTAysjmjj8dX2UKGgGR0BTITDKoybhaAdL6WgIR0CTBJc1fmcOdX2UKGgGR0Bg9xTVDrquaAdN6ANoCEdAkwlkcwQDm3V9lChoBkdAZUDY0VJti2gHTegDaAhHQJMKJrM1TBJ1fZQoaAZHQGdjz9sJpnJoB03oA2gIR0CTFXRywOe8dX2UKGgGR0BcMH+ZPVNIaAdN6ANoCEdAkxa5LqUu+XV9lChoBkdAaJ6cbzbvgGgHTegDaAhHQJMYB0aIeo11fZQoaAZHQGSnYJu2qkxoB03oA2gIR0CTGaUqx1PndX2UKGgGR0BiIpdfLLZBaAdN6ANoCEdAkxwI9LYf4nV9lChoBkdAZ7f6Uqx1PmgHTegDaAhHQJMfj7vXsgN1fZQoaAZHQGTu56lchTxoB03oA2gIR0CTKDWQfZEldX2UKGgGR0Bmaj+rELpiaAdN6ANoCEdAkyh0f5k9U3V9lChoBkdAZP78b70nPWgHTegDaAhHQJMohKBd2Pl1fZQoaAZHQBCIixFAmiRoB0vnaAhHQJMpYFW4mTl1fZQoaAZHQGS1jjzZpSJoB03oA2gIR0CTQbnGbTc7dX2UKGgGR0BgqdCAtnPFaAdN6ANoCEdAk0d0e6qbSnV9lChoBkdAYf+JvYODrmgHTegDaAhHQJNT1QwblzV1fZQoaAZHQGNLyuQp4KRoB03oA2gIR0CTVuiYb83udX2UKGgGR0BlgHTspoboaAdN6ANoCEdAk1hYBJZntnV9lChoBkdAZF44sEq2B2gHTegDaAhHQJNcL7ZWaMJ1fZQoaAZHQGEA2UB4lhRoB03oA2gIR0CTXLqU/wAmdX2UKGgGR0BT0drKvFFVaAdLz2gIR0CTYJlchTwVdX2UKGgGR0BmrNfkWAPNaAdN6ANoCEdAk2ZFfqoqC3V9lChoBkdAYIjxhlUZN2gHTegDaAhHQJNnaEh7mdR1fZQoaAZHQGWHYxL0z0poB03oA2gIR0CTaJk4WDYidX2UKGgGR0BlT6hpQDV6aAdN6ANoCEdAk2oTch1TznV9lChoBkdAYBiUIsyzomgHTegDaAhHQJNwqqKgqVh1fZQoaAZHQE6g04R28qZoB0vZaAhHQJN23bWVeKN1fZQoaAZHQGa/3Kji4rloB03oA2gIR0CTezhhYvFndX2UKGgGR0BguwgJTl1baAdN6ANoCEdAk3twjt5UtXV9lChoBkdAaFJJr+Hae2gHTegDaAhHQJN7fy7PIGR1fZQoaAZHQGXlMo2GZeBoB03oA2gIR0CTfD3os7MgdX2UKGgGR0BhoYYzi0fHaAdN6ANoCEdAk5EHaBZpz3V9lChoBkdAYYGNEPUaymgHTegDaAhHQJOVHboKUml1fZQoaAZHQGWAwNTcZcdoB03oA2gIR0CTo0KHfuTidX2UKGgGR0BmlwgieNDMaAdN6ANoCEdAk6UXtBv733V9lChoBkdAZ5I9QoCuEGgHTegDaAhHQJOp/b7CSA91fZQoaAZHQGOmTb349HNoB03oA2gIR0CTqsGMGX5WdX2UKGgGR0BmqTqlgtvoaAdN6ANoCEdAk6+cxoIv8XV9lChoBkdAZvuMtsenymgHTegDaAhHQJO0zqfOD8N1fZQoaAZHQGLRreqJdjZoB03oA2gIR0CTtdRiPQv6dX2UKGgGR0BgBVETg2qDaAdN6ANoCEdAk7heaz/p+3V9lChoBkdAVIsNXo1UEWgHS9RoCEdAk7qaptJnQXV9lChoBkdAZCp3dKujh2gHTegDaAhHQJO916KLsKN1fZQoaAZHQGHNawljVhFoB03oA2gIR0CTwqrcj7hvdX2UKGgGR0BmV3HJcPe6aAdN6ANoCEdAk8Y85wOvuHV9lChoBkdAYMvuG9HtnmgHTegDaAhHQJPGd7u2JBR1fZQoaAZHQGQrrytmthdoB03oA2gIR0CTxohufmLcdX2UKGgGR0BkQjCYTj//aAdN6ANoCEdAk8dZ+tr9EXV9lChoBkdAYk7WuHN5dGgHTegDaAhHQJPK0tZmqYJ1fZQoaAZHQGOKShBZ6ldoB03oA2gIR0CT5Htk4FRpdX2UKGgGR0Bku4oRZlnRaAdN6ANoCEdAk/QnVoYek3V9lChoBkdAZF2v9LpRoGgHTegDaAhHQJP1vq/ub7V1fZQoaAZHQGUUGdRR/ExoB03oA2gIR0CT+cFa0QbudX2UKGgGR0Bm9cqz7di2aAdN6ANoCEdAk/pTa4+bE3V9lChoBkdAZcSQzUI9kmgHTegDaAhHQJQEquGKyfN1fZQoaAZHQGKvO4XoC+1oB03oA2gIR0CUBgF2mpEQdX2UKGgGR0BmgrVMEidKaAdN6ANoCEdAlAkiDujRD3V9lChoBkdAYk1zjFQ2uWgHTegDaAhHQJQMHHAAQxx1fZQoaAZHQGdqxQBPsRhoB03oA2gIR0CUEVOh0yP/dX2UKGgGR0BlJw9mpVCHaAdN6ANoCEdAlBlrl/6O53V9lChoBkdAZbVhpg1FY2gHTegDaAhHQJQdrl6qsEJ1fZQoaAZHQGERp40Mw11oB03oA2gIR0CUHfMcZLqVdX2UKGgGR0BlCZFLFn7IaAdN6ANoCEdAlB4GP91loXV9lChoBkdAY6pZ26kIomgHTegDaAhHQJQe+RA8jiZ1fZQoaAZHQGM7T8pCrtFoB03oA2gIR0CUIuBvJiiJdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.99, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}