--- library_name: transformers language: - ar license: apache-2.0 base_model: openai/whisper-medium tags: - automatic-speech-recognition - arabic - generated_from_trainer datasets: - itskavya/gp metrics: - wer model-index: - name: Whisper Medium Informal Arabic results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Informal Arabic type: itskavya/gp config: default split: None args: default metrics: - name: Wer type: wer value: 27.51652854083248 --- # Whisper Medium Informal Arabic This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Informal Arabic dataset. It achieves the following results on the evaluation set: - Loss: 0.5486 - Wer: 27.5165 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 3000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.0515 | 4.0650 | 1000 | 0.4619 | 30.4498 | | 0.0028 | 8.1301 | 2000 | 0.5296 | 28.2894 | | 0.0005 | 12.1951 | 3000 | 0.5486 | 27.5165 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0