--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: emotion_classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.59375 --- # emotion_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2723 - Accuracy: 0.5938 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 20 | 2.0185 | 0.25 | | No log | 2.0 | 40 | 1.9216 | 0.35 | | No log | 3.0 | 60 | 1.8084 | 0.3875 | | No log | 4.0 | 80 | 1.6901 | 0.4375 | | No log | 5.0 | 100 | 1.6031 | 0.4562 | | No log | 6.0 | 120 | 1.5323 | 0.4688 | | No log | 7.0 | 140 | 1.4855 | 0.4813 | | No log | 8.0 | 160 | 1.4305 | 0.525 | | No log | 9.0 | 180 | 1.3853 | 0.4938 | | No log | 10.0 | 200 | 1.3556 | 0.5312 | | No log | 11.0 | 220 | 1.3141 | 0.5625 | | No log | 12.0 | 240 | 1.2958 | 0.5563 | | No log | 13.0 | 260 | 1.2810 | 0.5437 | | No log | 14.0 | 280 | 1.2629 | 0.6 | | No log | 15.0 | 300 | 1.2533 | 0.5938 | | No log | 16.0 | 320 | 1.2728 | 0.5813 | | No log | 17.0 | 340 | 1.2311 | 0.5437 | | No log | 18.0 | 360 | 1.2094 | 0.5938 | | No log | 19.0 | 380 | 1.2584 | 0.5687 | | No log | 20.0 | 400 | 1.2113 | 0.6125 | | No log | 21.0 | 420 | 1.2002 | 0.5938 | | No log | 22.0 | 440 | 1.2211 | 0.6062 | | No log | 23.0 | 460 | 1.2424 | 0.5875 | | No log | 24.0 | 480 | 1.2357 | 0.5813 | | 0.9674 | 25.0 | 500 | 1.1765 | 0.5938 | | 0.9674 | 26.0 | 520 | 1.2338 | 0.5875 | | 0.9674 | 27.0 | 540 | 1.2333 | 0.5875 | | 0.9674 | 28.0 | 560 | 1.2671 | 0.5563 | | 0.9674 | 29.0 | 580 | 1.2011 | 0.6 | | 0.9674 | 30.0 | 600 | 1.2008 | 0.6062 | | 0.9674 | 31.0 | 620 | 1.2582 | 0.5687 | | 0.9674 | 32.0 | 640 | 1.2820 | 0.5813 | | 0.9674 | 33.0 | 660 | 1.2435 | 0.6 | | 0.9674 | 34.0 | 680 | 1.2691 | 0.5875 | | 0.9674 | 35.0 | 700 | 1.2324 | 0.6188 | | 0.9674 | 36.0 | 720 | 1.2008 | 0.625 | | 0.9674 | 37.0 | 740 | 1.2381 | 0.6125 | | 0.9674 | 38.0 | 760 | 1.2494 | 0.5813 | | 0.9674 | 39.0 | 780 | 1.2303 | 0.5938 | | 0.9674 | 40.0 | 800 | 1.1828 | 0.6188 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.2