itpossible commited on
Commit
47b14a0
·
verified ·
1 Parent(s): a5451e2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -11
README.md CHANGED
@@ -80,26 +80,21 @@ JiuZhou outperforms GPT-3.5 in objective tasks:
80
  <img src="image/objective_score.png" width="800"/>
81
  <br>
82
  </p>
83
-
84
- JiuZhou also scores higher than ClimateChat across six criteria in subjective tasks:
85
  <p align="center">
86
  <br>
87
  <img src="image/subjective_score.png" width="800"/>
88
  <br>
89
  </p>
90
-
91
  ### General Ability
92
-
93
- We evaluate the performance of Chinese-Mistral-7B using three benchmark datasets: C-Eval, CMMLU, and MMLU.<br>
94
  Compared to other variants of Llama and Mistral models, JiuZhou shows outstanding performance:
95
  <p align="center">
96
  <br>
97
  <img src="image/general_score.png" width="800"/>
98
  <br>
99
  </p>
100
-
101
  ## Model Training Process
102
-
103
  ### Training Corpus
104
  The corpus consists of 50 million general documents and 3.4 million geoscience-related documents.
105
  <p align="center">
@@ -107,7 +102,6 @@ The corpus consists of 50 million general documents and 3.4 million geoscience-r
107
  <img src="image/JiuZhou-Corpus.png" width="800"/>
108
  <br>
109
  </p>
110
-
111
  ### Training Framework
112
  We use the JiuZhou-Framework proposed in this study.
113
  <p align="center">
@@ -115,7 +109,6 @@ We use the JiuZhou-Framework proposed in this study.
115
  <img src="image/JiuZhou-Framework.png" width="800"/>
116
  <br>
117
  </p>
118
-
119
  ### Two-stage Pre-adaptation Pre-training (TSPT)
120
  TSPT improves the efficiency of using limited geoscience data and overcomes some of the technical bottlenecks in continual pretraining for LLMs.<br>
121
  The difference between TSPT and single-stage training algorithms:
@@ -130,8 +123,6 @@ Comparison of TSPT and one-stage pre-training algorithm performance:
130
  <img src="image/TSPT_score.png" width="800"/>
131
  <br>
132
  </p>
133
-
134
-
135
  ## Model Training Code
136
  We use [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory) to fine-tune JiuZhou.
137
 
 
80
  <img src="image/objective_score.png" width="800"/>
81
  <br>
82
  </p>
83
+ JiuZhou also scores higher than JiuZhou across six criteria in subjective tasks:
 
84
  <p align="center">
85
  <br>
86
  <img src="image/subjective_score.png" width="800"/>
87
  <br>
88
  </p>
 
89
  ### General Ability
90
+ We evaluate the performance of JiuZhou using three benchmark datasets: C-Eval, CMMLU, and MMLU.<br>
 
91
  Compared to other variants of Llama and Mistral models, JiuZhou shows outstanding performance:
92
  <p align="center">
93
  <br>
94
  <img src="image/general_score.png" width="800"/>
95
  <br>
96
  </p>
 
97
  ## Model Training Process
 
98
  ### Training Corpus
99
  The corpus consists of 50 million general documents and 3.4 million geoscience-related documents.
100
  <p align="center">
 
102
  <img src="image/JiuZhou-Corpus.png" width="800"/>
103
  <br>
104
  </p>
 
105
  ### Training Framework
106
  We use the JiuZhou-Framework proposed in this study.
107
  <p align="center">
 
109
  <img src="image/JiuZhou-Framework.png" width="800"/>
110
  <br>
111
  </p>
 
112
  ### Two-stage Pre-adaptation Pre-training (TSPT)
113
  TSPT improves the efficiency of using limited geoscience data and overcomes some of the technical bottlenecks in continual pretraining for LLMs.<br>
114
  The difference between TSPT and single-stage training algorithms:
 
123
  <img src="image/TSPT_score.png" width="800"/>
124
  <br>
125
  </p>
 
 
126
  ## Model Training Code
127
  We use [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory) to fine-tune JiuZhou.
128