--- license: mit --- - Source Mistral 7B model:
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2/ - This model is converted from Bfloat16 datatype to Int8 datatype with convert tool from:
https://github.com/ggerganov/llama.cpp - Deployment on CPU:
Pull the ready-made llama.cpp container: ``` docker pull ghcr.io/ggerganov/llama.cpp:server ``` Assuming mistral-7B-instruct-v0.2-q8.gguf file is downloaded to /path/to/models directory on local machine, run the container accesing the model with: ``` docker run -v /path/to/models:/models -p 8000:8000 ghcr.io/ggerganov/llama.cpp:server -m /models/istral-7B-instruct-v0.2-q8.gguf --port 8000 --host 0.0.0.0 -n 512 ``` - Test the deployment accessing the model with the browser at http://localhost:8000 - llama.cpp server also provides OpenAI compatible API - Deployment on CUDA GPU:
``` docker pull ghcr.io/ggerganov/llama.cpp:server-cuda ``` ``` docker run --gpus all -v /path/to/models:/models -p 8000:8000 ghcr.io/ggerganov/llama.cpp:server-cuda -m /models/mistral-7B-instruct-v0.2-q8.gguf --port 8000 --host 0.0.0.0 -n 512 --n-gpu-layers 50 ``` - If CUDA GPU with 16GB RAM is available, the version of the model converted to float16 may be interesting, available in this repo:
https://huggingface.co/itod/mistral-7B-instruct-v0.2-f16 - More details about usage is avalable in llama.cpp documentation:
https://github.com/ggerganov/llama.cpp/tree/master/examples/server