ishan24's picture
Update README.md
453d5b6 verified
---
tags:
- SanaControlNetPipeline
pipeline_tag: text-to-image
license: mit
---
<p align="center" style="border-radius: 10px">
<img src="https://raw.githubusercontent.com/NVlabs/Sana/refs/heads/main/asset/logo.png" width="35%" alt="logo"/>
</p>
<div style="display:flex;justify-content: center">
<a href="https://huggingface.co/collections/Efficient-Large-Model/sana-673efba2a57ed99843f11f9e"><img src="https://img.shields.io/static/v1?label=Demo&message=Huggingface&color=yellow"></a> &ensp;
<a href="https://github.com/NVlabs/Sana"><img src="https://img.shields.io/static/v1?label=Code&message=Github&color=blue&logo=github"></a> &ensp;
<a href="https://nvlabs.github.io/Sana/"><img src="https://img.shields.io/static/v1?label=Project&message=Github&color=blue&logo=github-pages"></a> &ensp;
<a href="https://hanlab.mit.edu/projects/sana/"><img src="https://img.shields.io/static/v1?label=Page&message=MIT&color=darkred&logo=github-pages"></a> &ensp;
<a href="https://arxiv.org/abs/2410.10629"><img src="https://img.shields.io/static/v1?label=Arxiv&message=Sana&color=red&logo=arxiv"></a> &ensp;
<a href="https://nv-sana.mit.edu/"><img src="https://img.shields.io/static/v1?label=Demo&message=MIT&color=yellow"></a> &ensp;
<a href="https://discord.gg/rde6eaE5Ta"><img src="https://img.shields.io/static/v1?label=Discuss&message=Discord&color=purple&logo=discord"></a> &ensp;
</div>
# Model card
We introduce **Sana**, a text-to-image framework that can efficiently generate images up to 4096 × 4096 resolution.
Sana can synthesize high-resolution, high-quality images with strong text-image alignment at a remarkably fast speed, deployable on laptop GPU.
Source code is available at https://github.com/NVlabs/Sana.
### 🧨 Diffusers
### 1. How to use `SanaControlNetPipeline` with `🧨diffusers`
```python
# run `pip install git+https://github.com/huggingface/diffusers` before use Sana in diffusers
import torch
from diffusers import SanaControlNetModel, SanaControlNetPipeline
from diffusers.utils import load_image
controlnet = SanaControlNetModel.from_pretrained(
"ishan24/Sana_600M_1024px_ControlNet_diffusers",
torch_dtype=torch.float16
)
pipe = SanaControlNetPipeline.from_pretrained(
"Efficient-Large-Model/Sana_600M_1024px_diffusers",
variant="fp16",
controlnet=controlnet,
torch_dtype=torch.float16,
)
pipe.to('cuda')
pipe.vae.to(torch.bfloat16)
pipe.text_encoder.to(torch.bfloat16)
cond_image = load_image(
"https://huggingface.co/ishan24/Sana_600M_1024px_ControlNet_diffusers/resolve/main/hed_example.png"
)
prompt='a cat with a neon sign that says "Sana"'
image = pipe(
prompt,
control_image=cond_image,
).images[0]
image.save("sana.png")
```