--- tags: - mmeb - transformers - sentence-transformers language: - en - ar - zh - ko - ru - pl - tr - fr library_name: transformers license: mit pipeline_tag: image-feature-extraction --- ## mmE5-mllama-11b-instruct [mmE5: Improving Multimodal Multilingual Embeddings via High-quality Synthetic Data](https://arxiv.org/abs/2502.08468.pdf). Haonan Chen, Liang Wang, Nan Yang, Yutao Zhu, Ziliang Zhao, Furu Wei, Zhicheng Dou, arXiv 2025 This model is trained based on [Llama-3.2-11B-Vision](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision). [Github](https://github.com/haon-chen/mmE5) ## Train/Eval Data - Train data: https://huggingface.co/datasets/intfloat/mmE5-MMEB-hardneg, https://huggingface.co/datasets/intfloat/mmE5-synthetic - Eval data: https://huggingface.co/datasets/TIGER-Lab/MMEB-eval, https://huggingface.co/datasets/Haon-Chen/XTD-10 ## Experimental Results Our model achieves SOTA performance on MMEB benchmark. abs ## Usage ### Transformers Below is an example we adapted from [VLM2Vec](https://huggingface.co/TIGER-Lab/VLM2Vec-Full). ```python import torch import requests from PIL import Image from transformers import MllamaForConditionalGeneration, AutoProcessor # Pooling and Normalization def last_pooling(last_hidden_state, attention_mask, normalize=True): sequence_lengths = attention_mask.sum(dim=1) - 1 batch_size = last_hidden_state.shape[0] reps = last_hidden_state[torch.arange(batch_size, device=last_hidden_state.device), sequence_lengths] if normalize: reps = torch.nn.functional.normalize(reps, p=2, dim=-1) return reps def compute_similarity(q_reps, p_reps): return torch.matmul(q_reps, p_reps.transpose(0, 1)) model_name = "intfloat/mmE5-mllama-11b-instruct" # Load Processor and Model processor = AutoProcessor.from_pretrained(model_name) model = MllamaForConditionalGeneration.from_pretrained( model_name, torch_dtype=torch.bfloat16 ).to("cuda") model.eval() # Image + Text -> Text image = Image.open(requests.get('https://github.com/haon-chen/mmE5/blob/main/figures/example.jpg?raw=true', stream=True).raw) inputs = processor(text='<|image|><|begin_of_text|> Represent the given image with the following question: What is in the image', images=[image], return_tensors="pt").to("cuda") qry_output = last_pooling(model(**inputs, return_dict=True, output_hidden_states=True).hidden_states[-1], inputs['attention_mask']) string = 'A cat and a dog' text_inputs = processor(text=string, return_tensors="pt").to("cuda") tgt_output = last_pooling(model(**text_inputs, return_dict=True, output_hidden_states=True).hidden_states[-1], text_inputs['attention_mask']) print(string, '=', compute_similarity(qry_output, tgt_output)) ## A cat and a dog = tensor([[0.3965]], device='cuda:0', dtype=torch.bfloat16) string = 'A cat and a tiger' text_inputs = processor(text=string, return_tensors="pt").to("cuda") tgt_output = last_pooling(model(**text_inputs, return_dict=True, output_hidden_states=True).hidden_states[-1], text_inputs['attention_mask']) print(string, '=', compute_similarity(qry_output, tgt_output)) ## A cat and a tiger = tensor([[0.3105]], device='cuda:0', dtype=torch.bfloat16) # Text -> Image inputs = processor(text='Find me an everyday image that matches the given caption: A cat and a dog.', return_tensors="pt").to("cuda") qry_output = last_pooling(model(**inputs, return_dict=True, output_hidden_states=True).hidden_states[-1], inputs['attention_mask']) string = '<|image|><|begin_of_text|> Represent the given image.' tgt_inputs = processor(text=string, images=[Image.open('figures/example.jpg')], return_tensors="pt").to("cuda") tgt_output = last_pooling(model(**tgt_inputs, return_dict=True, output_hidden_states=True).hidden_states[-1], tgt_inputs['attention_mask']) print(string, '=', compute_similarity(qry_output, tgt_output)) ## <|image|><|begin_of_text|> Represent the given image. = tensor([[0.4219]], device='cuda:0', dtype=torch.bfloat16) inputs = processor(text='Find me an everyday image that matches the given caption: A cat and a tiger.', return_tensors="pt").to("cuda") qry_output = last_pooling(model(**inputs, return_dict=True, output_hidden_states=True).hidden_states[-1], inputs['attention_mask']) string = '<|image|><|begin_of_text|> Represent the given image.' tgt_inputs = processor(text=string, images=[Image.open('figures/example.jpg')], return_tensors="pt").to("cuda") tgt_output = last_pooling(model(**tgt_inputs, return_dict=True, output_hidden_states=True).hidden_states[-1], tgt_inputs['attention_mask']) print(string, '=', compute_similarity(qry_output, tgt_output)) ## <|image|><|begin_of_text|> Represent the given image. = tensor([[0.3887]], device='cuda:0', dtype=torch.bfloat16) ``` ### Sentence Transformers You can also use Sentence Transformers, where the majority of the pre- and post-processing has been abstracted. ```python from sentence_transformers import SentenceTransformer import requests # Load the model model = SentenceTransformer("intfloat/mmE5-mllama-11b-instruct", trust_remote_code=True) # Download an example image of a cat and a dog dog_cat_image_bytes = requests.get('https://github.com/haon-chen/mmE5/blob/main/figures/example.jpg?raw=true', stream=True).raw.read() with open("cat_dog_example.jpg", "wb") as f: f.write(dog_cat_image_bytes) # Image + Text -> Text image_embeddings = model.encode([{ "image": "cat_dog_example.jpg", "text": "Represent the given image with the following question: What is in the image", }]) text_embeddings = model.encode([ {"text": "A cat and a dog"}, {"text": "A cat and a tiger"}, ]) similarity = model.similarity(image_embeddings, text_embeddings) print(similarity) # tensor([[0.3967, 0.3090]]) # ✅ The first text is most similar to the image # Text -> Image image_embeddings = model.encode([ {"image": dog_cat_image_bytes, "text": "Represent the given image."}, ]) text_embeddings = model.encode([ {"text": "Find me an everyday image that matches the given caption: A cat and a dog."}, {"text": "Find me an everyday image that matches the given caption: A cat and a tiger."}, ]) similarity = model.similarity(image_embeddings, text_embeddings) print(similarity) # tensor([[0.4250, 0.3896]]) # ✅ The first text is most similar to the image ``` ## Citation ``` @article{chen2025mmE5, title={mmE5: Improving Multimodal Multilingual Embeddings via High-quality Synthetic Data}, author={Chen, Haonan and Wang, Liang and Yang, Nan and Zhu, Yutao and Zhao, Ziliang and Wei, Furu and Dou, Zhicheng}, journal={arXiv preprint arXiv:2502.08468}, year={2025} } ```