Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -44,57 +44,72 @@ pip install -r requirements.txt
|
|
44 |
|
45 |
Then you can enter the directory to run the following command.
|
46 |
```python
|
47 |
-
from
|
48 |
-
from src.arguments import ModelArguments
|
49 |
-
from src.utils import load_processor
|
50 |
import torch
|
51 |
-
from transformers import HfArgumentParser, AutoProcessor
|
52 |
from PIL import Image
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
model.eval()
|
62 |
-
|
63 |
# Image + Text -> Text
|
64 |
inputs = processor(text='<|image|><|begin_of_text|> Represent the given image with the following question: What is in the image', images=[Image.open(
|
65 |
-
'figures/example.jpg')], return_tensors="pt")
|
66 |
-
|
67 |
-
|
68 |
string = 'A cat and a dog'
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
print(string, '=', model.compute_similarity(qry_output, tgt_output))
|
73 |
## A cat and a dog = tensor([[0.3965]], device='cuda:0', dtype=torch.bfloat16)
|
|
|
74 |
string = 'A cat and a tiger'
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
print(string, '=', model.compute_similarity(qry_output, tgt_output))
|
79 |
## A cat and a tiger = tensor([[0.3105]], device='cuda:0', dtype=torch.bfloat16)
|
|
|
80 |
# Text -> Image
|
81 |
-
inputs = processor(text='Find me an everyday image that matches the given caption: A cat and a dog.', return_tensors="pt")
|
82 |
-
|
83 |
-
|
84 |
string = '<|image|><|begin_of_text|> Represent the given image.'
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
print(string, '=', model.compute_similarity(qry_output, tgt_output))
|
89 |
## <|image|><|begin_of_text|> Represent the given image. = tensor([[0.4219]], device='cuda:0', dtype=torch.bfloat16)
|
90 |
-
|
91 |
-
inputs =
|
92 |
-
qry_output = model(
|
93 |
string = '<|image|><|begin_of_text|> Represent the given image.'
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
print(string, '=', model.compute_similarity(qry_output, tgt_output))
|
98 |
## <|image|><|begin_of_text|> Represent the given image. = tensor([[0.3887]], device='cuda:0', dtype=torch.bfloat16)
|
99 |
```
|
100 |
|
@@ -106,4 +121,4 @@ print(string, '=', model.compute_similarity(qry_output, tgt_output))
|
|
106 |
journal={arXiv preprint arXiv:2502.08468},
|
107 |
year={2025}
|
108 |
}
|
109 |
-
```
|
|
|
44 |
|
45 |
Then you can enter the directory to run the following command.
|
46 |
```python
|
47 |
+
from transformers import MllamaForConditionalGeneration, AutoProcessor, AutoConfig
|
|
|
|
|
48 |
import torch
|
|
|
49 |
from PIL import Image
|
50 |
+
|
51 |
+
# Pooling and Normalization
|
52 |
+
def last_pooling(last_hidden_state, attention_mask, normalize=True):
|
53 |
+
sequence_lengths = attention_mask.sum(dim=1) - 1
|
54 |
+
batch_size = last_hidden_state.shape[0]
|
55 |
+
reps = last_hidden_state[torch.arange(batch_size, device=last_hidden_state.device), sequence_lengths]
|
56 |
+
if normalize:
|
57 |
+
reps = torch.nn.functional.normalize(reps, p=2, dim=-1)
|
58 |
+
return reps
|
59 |
+
|
60 |
+
def compute_similarity(q_reps, p_reps):
|
61 |
+
return torch.matmul(q_reps, p_reps.transpose(0, 1))
|
62 |
+
|
63 |
+
model_name = "intfloat/mmE5-mllama-11b-instruct"
|
64 |
+
|
65 |
+
# Load Processor and Model
|
66 |
+
processor = AutoProcessor.from_pretrained(model_name)
|
67 |
+
processor.tokenizer.padding_side = "right"
|
68 |
+
|
69 |
+
config = AutoConfig.from_pretrained(model_name)
|
70 |
+
if hasattr(config, 'use_cache'):
|
71 |
+
config.use_cache = False
|
72 |
+
config.padding_side = "right"
|
73 |
+
model = MllamaForConditionalGeneration.from_pretrained(
|
74 |
+
model_name, config=config,
|
75 |
+
torch_dtype=torch.bfloat16
|
76 |
+
).to("cuda")
|
77 |
+
model.padding_side = "right"
|
78 |
model.eval()
|
79 |
+
|
80 |
# Image + Text -> Text
|
81 |
inputs = processor(text='<|image|><|begin_of_text|> Represent the given image with the following question: What is in the image', images=[Image.open(
|
82 |
+
'figures/example.jpg')], return_tensors="pt").to("cuda")
|
83 |
+
qry_output = last_pooling(model(**inputs, return_dict=True, output_hidden_states=True).hidden_states[-1], inputs['attention_mask'])
|
84 |
+
|
85 |
string = 'A cat and a dog'
|
86 |
+
text_inputs = processor(text=string, return_tensors="pt").to("cuda")
|
87 |
+
tgt_output = last_pooling(model(**text_inputs, return_dict=True, output_hidden_states=True).hidden_states[-1], text_inputs['attention_mask'])
|
88 |
+
print(string, '=', compute_similarity(qry_output, tgt_output))
|
|
|
89 |
## A cat and a dog = tensor([[0.3965]], device='cuda:0', dtype=torch.bfloat16)
|
90 |
+
|
91 |
string = 'A cat and a tiger'
|
92 |
+
text_inputs = processor(text=string, return_tensors="pt").to("cuda")
|
93 |
+
tgt_output = last_pooling(model(**text_inputs, return_dict=True, output_hidden_states=True).hidden_states[-1], text_inputs['attention_mask'])
|
94 |
+
print(string, '=', compute_similarity(qry_output, tgt_output))
|
|
|
95 |
## A cat and a tiger = tensor([[0.3105]], device='cuda:0', dtype=torch.bfloat16)
|
96 |
+
|
97 |
# Text -> Image
|
98 |
+
inputs = processor(text='Find me an everyday image that matches the given caption: A cat and a dog.', return_tensors="pt").to("cuda")
|
99 |
+
qry_output = last_pooling(model(**inputs, return_dict=True, output_hidden_states=True).hidden_states[-1], inputs['attention_mask'])
|
100 |
+
|
101 |
string = '<|image|><|begin_of_text|> Represent the given image.'
|
102 |
+
tgt_inputs = processor(text=string, images=[Image.open('figures/example.jpg')], return_tensors="pt").to("cuda")
|
103 |
+
tgt_output = last_pooling(model(**tgt_inputs, return_dict=True, output_hidden_states=True).hidden_states[-1], tgt_inputs['attention_mask'])
|
104 |
+
print(string, '=', compute_similarity(qry_output, tgt_output))
|
|
|
105 |
## <|image|><|begin_of_text|> Represent the given image. = tensor([[0.4219]], device='cuda:0', dtype=torch.bfloat16)
|
106 |
+
|
107 |
+
inputs = processor(text='Find me an everyday image that matches the given caption: A cat and a tiger.', return_tensors="pt").to("cuda")
|
108 |
+
qry_output = last_pooling(model(**inputs, return_dict=True, output_hidden_states=True).hidden_states[-1], inputs['attention_mask'])
|
109 |
string = '<|image|><|begin_of_text|> Represent the given image.'
|
110 |
+
tgt_inputs = processor(text=string, images=[Image.open('figures/example.jpg')], return_tensors="pt").to("cuda")
|
111 |
+
tgt_output = last_pooling(model(**tgt_inputs, return_dict=True, output_hidden_states=True).hidden_states[-1], tgt_inputs['attention_mask'])
|
112 |
+
print(string, '=', compute_similarity(qry_output, tgt_output))
|
|
|
113 |
## <|image|><|begin_of_text|> Represent the given image. = tensor([[0.3887]], device='cuda:0', dtype=torch.bfloat16)
|
114 |
```
|
115 |
|
|
|
121 |
journal={arXiv preprint arXiv:2502.08468},
|
122 |
year={2025}
|
123 |
}
|
124 |
+
```
|