| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						""" PyTorch InternLM2 model.""" | 
					
					
						
						| 
							 | 
						import math | 
					
					
						
						| 
							 | 
						import queue | 
					
					
						
						| 
							 | 
						import threading | 
					
					
						
						| 
							 | 
						import warnings | 
					
					
						
						| 
							 | 
						from typing import List, Optional, Tuple, Union | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import torch | 
					
					
						
						| 
							 | 
						import torch.utils.checkpoint | 
					
					
						
						| 
							 | 
						from einops import rearrange | 
					
					
						
						| 
							 | 
						from torch import nn | 
					
					
						
						| 
							 | 
						from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | 
					
					
						
						| 
							 | 
						from transformers.activations import ACT2FN | 
					
					
						
						| 
							 | 
						from transformers.modeling_outputs import ( | 
					
					
						
						| 
							 | 
						    BaseModelOutputWithPast, | 
					
					
						
						| 
							 | 
						    CausalLMOutputWithPast, | 
					
					
						
						| 
							 | 
						    SequenceClassifierOutputWithPast, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						from transformers.modeling_utils import PreTrainedModel | 
					
					
						
						| 
							 | 
						from transformers.utils import ( | 
					
					
						
						| 
							 | 
						    add_start_docstrings, | 
					
					
						
						| 
							 | 
						    add_start_docstrings_to_model_forward, | 
					
					
						
						| 
							 | 
						    logging, | 
					
					
						
						| 
							 | 
						    replace_return_docstrings, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						try: | 
					
					
						
						| 
							 | 
						    from transformers.generation.streamers import BaseStreamer | 
					
					
						
						| 
							 | 
						except:   | 
					
					
						
						| 
							 | 
						    BaseStreamer = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						from .configuration_internlm import InternLMConfig as InternLM2Config | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						logger = logging.get_logger(__name__) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						_CONFIG_FOR_DOC = "InternLM2Config" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						def _make_causal_mask( | 
					
					
						
						| 
							 | 
						    input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0 | 
					
					
						
						| 
							 | 
						): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    Make causal mask used for bi-directional self-attention. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    bsz, tgt_len = input_ids_shape | 
					
					
						
						| 
							 | 
						    mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device) | 
					
					
						
						| 
							 | 
						    mask_cond = torch.arange(mask.size(-1), device=device) | 
					
					
						
						| 
							 | 
						    mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) | 
					
					
						
						| 
							 | 
						    mask = mask.to(dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if past_key_values_length > 0: | 
					
					
						
						| 
							 | 
						        mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1) | 
					
					
						
						| 
							 | 
						    return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    bsz, src_len = mask.size() | 
					
					
						
						| 
							 | 
						    tgt_len = tgt_len if tgt_len is not None else src_len | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    inverted_mask = 1.0 - expanded_mask | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class InternLM2RMSNorm(nn.Module): | 
					
					
						
						| 
							 | 
						    def __init__(self, hidden_size, eps=1e-6): | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        InternLM2RMSNorm is equivalent to T5LayerNorm | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        self.weight = nn.Parameter(torch.ones(hidden_size)) | 
					
					
						
						| 
							 | 
						        self.variance_epsilon = eps | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward(self, hidden_states): | 
					
					
						
						| 
							 | 
						        input_dtype = hidden_states.dtype | 
					
					
						
						| 
							 | 
						        hidden_states = hidden_states.to(torch.float32) | 
					
					
						
						| 
							 | 
						        variance = hidden_states.pow(2).mean(-1, keepdim=True) | 
					
					
						
						| 
							 | 
						        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | 
					
					
						
						| 
							 | 
						        return self.weight * hidden_states.to(input_dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class InternLM2RotaryEmbedding(nn.Module): | 
					
					
						
						| 
							 | 
						    def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.dim = dim | 
					
					
						
						| 
							 | 
						        self.max_position_embeddings = max_position_embeddings | 
					
					
						
						| 
							 | 
						        self.base = base | 
					
					
						
						| 
							 | 
						        inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) | 
					
					
						
						| 
							 | 
						        self.register_buffer("inv_freq", inv_freq, persistent=False) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self._set_cos_sin_cache( | 
					
					
						
						| 
							 | 
						            seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _set_cos_sin_cache(self, seq_len, device, dtype): | 
					
					
						
						| 
							 | 
						        self.max_seq_len_cached = seq_len | 
					
					
						
						| 
							 | 
						        t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        freqs = torch.einsum("i,j->ij", t, self.inv_freq) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        emb = torch.cat((freqs, freqs), dim=-1) | 
					
					
						
						| 
							 | 
						        self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) | 
					
					
						
						| 
							 | 
						        self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward(self, x, seq_len=None): | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if seq_len > self.max_seq_len_cached: | 
					
					
						
						| 
							 | 
						            self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return ( | 
					
					
						
						| 
							 | 
						            self.cos_cached[:seq_len].to(dtype=x.dtype), | 
					
					
						
						| 
							 | 
						            self.sin_cached[:seq_len].to(dtype=x.dtype), | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding): | 
					
					
						
						| 
							 | 
						    """InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): | 
					
					
						
						| 
							 | 
						        self.scaling_factor = scaling_factor | 
					
					
						
						| 
							 | 
						        super().__init__(dim, max_position_embeddings, base, device) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _set_cos_sin_cache(self, seq_len, device, dtype): | 
					
					
						
						| 
							 | 
						        self.max_seq_len_cached = seq_len | 
					
					
						
						| 
							 | 
						        t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) | 
					
					
						
						| 
							 | 
						        t = t / self.scaling_factor | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        freqs = torch.einsum("i,j->ij", t, self.inv_freq) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        emb = torch.cat((freqs, freqs), dim=-1) | 
					
					
						
						| 
							 | 
						        self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) | 
					
					
						
						| 
							 | 
						        self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding): | 
					
					
						
						| 
							 | 
						    """InternLM2RotaryEmbedding extended with Dynamic NTK scaling. | 
					
					
						
						| 
							 | 
						    Credits to the Reddit users /u/bloc97 and /u/emozilla. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): | 
					
					
						
						| 
							 | 
						        self.scaling_factor = scaling_factor | 
					
					
						
						| 
							 | 
						        super().__init__(dim, max_position_embeddings, base, device) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _set_cos_sin_cache(self, seq_len, device, dtype): | 
					
					
						
						| 
							 | 
						        self.max_seq_len_cached = seq_len | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if seq_len > self.max_position_embeddings: | 
					
					
						
						| 
							 | 
						            base = self.base * ( | 
					
					
						
						| 
							 | 
						                (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1) | 
					
					
						
						| 
							 | 
						            ) ** (self.dim / (self.dim - 2)) | 
					
					
						
						| 
							 | 
						            inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) | 
					
					
						
						| 
							 | 
						            self.register_buffer("inv_freq", inv_freq, persistent=False) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        freqs = torch.einsum("i,j->ij", t, self.inv_freq) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        emb = torch.cat((freqs, freqs), dim=-1) | 
					
					
						
						| 
							 | 
						        self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) | 
					
					
						
						| 
							 | 
						        self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def rotate_half(x): | 
					
					
						
						| 
							 | 
						    """Rotates half the hidden dims of the input.""" | 
					
					
						
						| 
							 | 
						    x1 = x[..., : x.shape[-1] // 2] | 
					
					
						
						| 
							 | 
						    x2 = x[..., x.shape[-1] // 2 :] | 
					
					
						
						| 
							 | 
						    return torch.cat((-x2, x1), dim=-1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def apply_rotary_pos_emb(q, k, cos, sin, position_ids): | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    cos = cos.squeeze(1).squeeze(0)   | 
					
					
						
						| 
							 | 
						    sin = sin.squeeze(1).squeeze(0)   | 
					
					
						
						| 
							 | 
						    cos = cos.unsqueeze(0).unsqueeze(0).expand(len(position_ids), -1, -1, -1) | 
					
					
						
						| 
							 | 
						    sin = sin.unsqueeze(0).unsqueeze(0).expand(len(position_ids), -1, -1, -1) | 
					
					
						
						| 
							 | 
						    if q.size(2) == 1: | 
					
					
						
						| 
							 | 
						        q_embed = (q * cos[:, :, -1, :]) + (rotate_half(q) * sin[:, :, -1, :]) | 
					
					
						
						| 
							 | 
						    else: | 
					
					
						
						| 
							 | 
						        q_embed = (q * cos) + (rotate_half(q) * sin) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if k.size(2) == 1: | 
					
					
						
						| 
							 | 
						        k_embed = (k * cos[:, :, -1, :]) + (rotate_half(k) * sin[:, :, -1, :]) | 
					
					
						
						| 
							 | 
						    else: | 
					
					
						
						| 
							 | 
						        k_embed = (k * cos) + (rotate_half(k) * sin) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    return q_embed, k_embed | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class InternLM2MLP(nn.Module): | 
					
					
						
						| 
							 | 
						    def __init__(self, config): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        self.config = config | 
					
					
						
						| 
							 | 
						        self.hidden_size = config.hidden_size | 
					
					
						
						| 
							 | 
						        self.intermediate_size = config.intermediate_size | 
					
					
						
						| 
							 | 
						        self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | 
					
					
						
						| 
							 | 
						        self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | 
					
					
						
						| 
							 | 
						        self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) | 
					
					
						
						| 
							 | 
						        self.act_fn = ACT2FN[config.hidden_act] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward(self, x): | 
					
					
						
						| 
							 | 
						        down_proj = self.w2(self.act_fn(self.w1(x)) * self.w3(x)) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return down_proj | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, | 
					
					
						
						| 
							 | 
						    num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    batch, num_key_value_heads, slen, head_dim = hidden_states.shape | 
					
					
						
						| 
							 | 
						    if n_rep == 1: | 
					
					
						
						| 
							 | 
						        return hidden_states | 
					
					
						
						| 
							 | 
						    hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) | 
					
					
						
						| 
							 | 
						    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class InternLM2Attention(nn.Module): | 
					
					
						
						| 
							 | 
						    """Multi-headed attention from 'Attention Is All You Need' paper""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__(self, config: InternLM2Config): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        self.config = config | 
					
					
						
						| 
							 | 
						        self.hidden_size = config.hidden_size | 
					
					
						
						| 
							 | 
						        self.num_heads = config.num_attention_heads | 
					
					
						
						| 
							 | 
						        self.head_dim = self.hidden_size // self.num_heads | 
					
					
						
						| 
							 | 
						        self.num_key_value_heads = config.num_key_value_heads | 
					
					
						
						| 
							 | 
						        self.num_key_value_groups = self.num_heads // self.num_key_value_heads | 
					
					
						
						| 
							 | 
						        self.max_position_embeddings = config.max_position_embeddings | 
					
					
						
						| 
							 | 
						        self.is_causal = True | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if (self.head_dim * self.num_heads) != self.hidden_size: | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" | 
					
					
						
						| 
							 | 
						                f" and `num_heads`: {self.num_heads})." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.wqkv = nn.Linear( | 
					
					
						
						| 
							 | 
						            self.hidden_size, | 
					
					
						
						| 
							 | 
						            (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim, | 
					
					
						
						| 
							 | 
						            bias=config.bias, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias) | 
					
					
						
						| 
							 | 
						        self._init_rope() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _init_rope(self): | 
					
					
						
						| 
							 | 
						        if self.config.rope_scaling is None: | 
					
					
						
						| 
							 | 
						            self.rotary_emb = InternLM2RotaryEmbedding( | 
					
					
						
						| 
							 | 
						                self.head_dim, | 
					
					
						
						| 
							 | 
						                max_position_embeddings=self.max_position_embeddings, | 
					
					
						
						| 
							 | 
						                base=self.config.rope_theta, | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            scaling_type = self.config.rope_scaling["type"] | 
					
					
						
						| 
							 | 
						            scaling_factor = self.config.rope_scaling["factor"] | 
					
					
						
						| 
							 | 
						            if scaling_type == "dynamic": | 
					
					
						
						| 
							 | 
						                self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding( | 
					
					
						
						| 
							 | 
						                    self.head_dim, | 
					
					
						
						| 
							 | 
						                    max_position_embeddings=self.max_position_embeddings, | 
					
					
						
						| 
							 | 
						                    base=self.config.rope_theta, | 
					
					
						
						| 
							 | 
						                    scaling_factor=scaling_factor | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                raise ValueError("Currently we only support rotary embedding's type being 'dynamic'.") | 
					
					
						
						| 
							 | 
						        return self.rotary_emb | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | 
					
					
						
						| 
							 | 
						        return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        hidden_states: torch.Tensor, | 
					
					
						
						| 
							 | 
						        attention_mask: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        position_ids: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        past_key_value: Optional[Tuple[torch.Tensor]] = None, | 
					
					
						
						| 
							 | 
						        output_attentions: bool = False, | 
					
					
						
						| 
							 | 
						        use_cache: bool = False, | 
					
					
						
						| 
							 | 
						        **kwargs, | 
					
					
						
						| 
							 | 
						    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | 
					
					
						
						| 
							 | 
						        if "padding_mask" in kwargs: | 
					
					
						
						| 
							 | 
						            warnings.warn( | 
					
					
						
						| 
							 | 
						                "Passing `padding_mask` is deprecated and will be removed in v4.37. " | 
					
					
						
						| 
							 | 
						                "Please make sure use `attention_mask` instead.`" | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        bsz, q_len, _ = hidden_states.size() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        qkv_states = self.wqkv(hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        qkv_states = rearrange( | 
					
					
						
						| 
							 | 
						            qkv_states, | 
					
					
						
						| 
							 | 
						            "b q (h gs d) -> b q h gs d", | 
					
					
						
						| 
							 | 
						            gs=2 + self.num_key_value_groups, | 
					
					
						
						| 
							 | 
						            d=self.head_dim, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        query_states = qkv_states[..., : self.num_key_value_groups, :] | 
					
					
						
						| 
							 | 
						        query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d") | 
					
					
						
						| 
							 | 
						        key_states = qkv_states[..., -2, :] | 
					
					
						
						| 
							 | 
						        value_states = qkv_states[..., -1, :] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        query_states = query_states.transpose(1, 2) | 
					
					
						
						| 
							 | 
						        key_states = key_states.transpose(1, 2) | 
					
					
						
						| 
							 | 
						        value_states = value_states.transpose(1, 2) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        kv_seq_len = key_states.shape[-2] | 
					
					
						
						| 
							 | 
						        if past_key_value is not None: | 
					
					
						
						| 
							 | 
						            kv_seq_len += past_key_value[0].shape[-2] | 
					
					
						
						| 
							 | 
						        cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | 
					
					
						
						| 
							 | 
						        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if past_key_value is not None: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            key_states = torch.cat([past_key_value[0], key_states], dim=2) | 
					
					
						
						| 
							 | 
						            value_states = torch.cat([past_key_value[1], value_states], dim=2) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        past_key_value = (key_states, value_states) if use_cache else None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        key_states = repeat_kv(key_states, self.num_key_value_groups) | 
					
					
						
						| 
							 | 
						        value_states = repeat_kv(value_states, self.num_key_value_groups) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" | 
					
					
						
						| 
							 | 
						                f" {attn_weights.size()}" | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if attention_mask is not None: | 
					
					
						
						| 
							 | 
						            if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): | 
					
					
						
						| 
							 | 
						                raise ValueError( | 
					
					
						
						| 
							 | 
						                    f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            attn_weights = attn_weights + attention_mask | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) | 
					
					
						
						| 
							 | 
						        attn_output = torch.matmul(attn_weights, value_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" | 
					
					
						
						| 
							 | 
						                f" {attn_output.size()}" | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        attn_output = attn_output.transpose(1, 2).contiguous() | 
					
					
						
						| 
							 | 
						        attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        attn_output = self.wo(attn_output) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if not output_attentions: | 
					
					
						
						| 
							 | 
						            attn_weights = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return attn_output, attn_weights, past_key_value | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class InternLM2FlashAttention2(InternLM2Attention): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays | 
					
					
						
						| 
							 | 
						    untouched. The only required change would be on the forward pass where it needs to correctly call the public API of | 
					
					
						
						| 
							 | 
						    flash attention and deal with padding tokens in case the input contains any of them. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        hidden_states: torch.Tensor, | 
					
					
						
						| 
							 | 
						        attention_mask: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        position_ids: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        past_key_value: Optional[Tuple[torch.Tensor]] = None, | 
					
					
						
						| 
							 | 
						        output_attentions: bool = False, | 
					
					
						
						| 
							 | 
						        use_cache: bool = False, | 
					
					
						
						| 
							 | 
						        **kwargs, | 
					
					
						
						| 
							 | 
						    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if "padding_mask" in kwargs: | 
					
					
						
						| 
							 | 
						            warnings.warn( | 
					
					
						
						| 
							 | 
						                "Passing `padding_mask` is deprecated and will be removed in v4.37. " | 
					
					
						
						| 
							 | 
						                "Please make sure use `attention_mask` instead.`" | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            attention_mask = kwargs.pop("padding_mask") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        output_attentions = False | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        bsz, q_len, _ = hidden_states.size() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        qkv_states = self.wqkv(hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        qkv_states = rearrange( | 
					
					
						
						| 
							 | 
						            qkv_states, | 
					
					
						
						| 
							 | 
						            "b q (h gs d) -> b q h gs d", | 
					
					
						
						| 
							 | 
						            gs=self.num_heads + 2 * self.num_key_value_heads, | 
					
					
						
						| 
							 | 
						            d=self.head_dim, | 
					
					
						
						| 
							 | 
						            q=q_len, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        query_states = qkv_states[..., : self.num_key_value_groups, :] | 
					
					
						
						| 
							 | 
						        query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d") | 
					
					
						
						| 
							 | 
						        key_states = qkv_states[..., -2, :] | 
					
					
						
						| 
							 | 
						        value_states = qkv_states[..., -1, :] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        kv_seq_len = key_states.shape[-2] | 
					
					
						
						| 
							 | 
						        if past_key_value is not None: | 
					
					
						
						| 
							 | 
						            kv_seq_len += past_key_value[0].shape[-2] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if past_key_value is not None: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            key_states = torch.cat([past_key_value[0], key_states], dim=2) | 
					
					
						
						| 
							 | 
						            value_states = torch.cat([past_key_value[1], value_states], dim=2) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        past_key_value = (key_states, value_states) if use_cache else None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        query_states = query_states.transpose(1, 2) | 
					
					
						
						| 
							 | 
						        key_states = key_states.transpose(1, 2) | 
					
					
						
						| 
							 | 
						        value_states = value_states.transpose(1, 2) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        dropout_rate = 0.0 if not self.training else self.attention_dropout | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        input_dtype = query_states.dtype | 
					
					
						
						| 
							 | 
						        if input_dtype == torch.float32: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            if hasattr(self.config, "_pre_quantization_dtype"): | 
					
					
						
						| 
							 | 
						                target_dtype = self.config._pre_quantization_dtype | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                target_dtype = self.q_proj.weight.dtype | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            logger.warning_once( | 
					
					
						
						| 
							 | 
						                f"The input hidden states seems to be silently casted in float32, this might be related to" | 
					
					
						
						| 
							 | 
						                f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back " | 
					
					
						
						| 
							 | 
						                f"the input in {target_dtype}." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            query_states = query_states.to(target_dtype) | 
					
					
						
						| 
							 | 
						            key_states = key_states.to(target_dtype) | 
					
					
						
						| 
							 | 
						            value_states = value_states.to(target_dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        attn_output = self._flash_attention_forward( | 
					
					
						
						| 
							 | 
						            query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() | 
					
					
						
						| 
							 | 
						        attn_output = self.wo(attn_output) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if not output_attentions: | 
					
					
						
						| 
							 | 
						            attn_weights = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return attn_output, attn_weights, past_key_value | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class InternLM2DecoderLayer(nn.Module): | 
					
					
						
						| 
							 | 
						    def __init__(self, config: InternLM2Config): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        self.hidden_size = config.hidden_size | 
					
					
						
						| 
							 | 
						        self.attention = ( | 
					
					
						
						| 
							 | 
						            InternLM2Attention(config=config) | 
					
					
						
						| 
							 | 
						            if not getattr(config, "_flash_attn_2_enabled", False) | 
					
					
						
						| 
							 | 
						            else InternLM2FlashAttention2(config=config) | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        self.feed_forward = InternLM2MLP(config) | 
					
					
						
						| 
							 | 
						        self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
					
						
						| 
							 | 
						        self.ffn_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        hidden_states: torch.Tensor, | 
					
					
						
						| 
							 | 
						        attention_mask: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        position_ids: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        past_key_value: Optional[Tuple[torch.Tensor]] = None, | 
					
					
						
						| 
							 | 
						        output_attentions: Optional[bool] = False, | 
					
					
						
						| 
							 | 
						        use_cache: Optional[bool] = False, | 
					
					
						
						| 
							 | 
						        **kwargs, | 
					
					
						
						| 
							 | 
						    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | 
					
					
						
						| 
							 | 
						            attention_mask (`torch.FloatTensor`, *optional*): | 
					
					
						
						| 
							 | 
						                attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, | 
					
					
						
						| 
							 | 
						                query_sequence_length, key_sequence_length)` if default attention is used. | 
					
					
						
						| 
							 | 
						            output_attentions (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						                Whether or not to return the attentions tensors of all attention layers. See `attentions` under | 
					
					
						
						| 
							 | 
						                returned tensors for more detail. | 
					
					
						
						| 
							 | 
						            use_cache (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding | 
					
					
						
						| 
							 | 
						                (see `past_key_values`). | 
					
					
						
						| 
							 | 
						            past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        if "padding_mask" in kwargs: | 
					
					
						
						| 
							 | 
						            warnings.warn( | 
					
					
						
						| 
							 | 
						                "Passing `padding_mask` is deprecated and will be removed in v4.37. " | 
					
					
						
						| 
							 | 
						                "Please make sure use `attention_mask` instead.`" | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        residual = hidden_states | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        hidden_states = self.attention_norm(hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        hidden_states, self_attn_weights, present_key_value = self.attention( | 
					
					
						
						| 
							 | 
						            hidden_states=hidden_states, | 
					
					
						
						| 
							 | 
						            attention_mask=attention_mask, | 
					
					
						
						| 
							 | 
						            position_ids=position_ids, | 
					
					
						
						| 
							 | 
						            past_key_value=past_key_value, | 
					
					
						
						| 
							 | 
						            output_attentions=output_attentions, | 
					
					
						
						| 
							 | 
						            use_cache=use_cache, | 
					
					
						
						| 
							 | 
						            **kwargs, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        hidden_states = residual + hidden_states | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        residual = hidden_states | 
					
					
						
						| 
							 | 
						        hidden_states = self.ffn_norm(hidden_states) | 
					
					
						
						| 
							 | 
						        hidden_states = self.feed_forward(hidden_states) | 
					
					
						
						| 
							 | 
						        hidden_states = residual + hidden_states | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        outputs = (hidden_states,) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if output_attentions: | 
					
					
						
						| 
							 | 
						            outputs += (self_attn_weights,) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if use_cache: | 
					
					
						
						| 
							 | 
						            outputs += (present_key_value,) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return outputs | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						InternLM2_START_DOCSTRING = r""" | 
					
					
						
						| 
							 | 
						    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | 
					
					
						
						| 
							 | 
						    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | 
					
					
						
						| 
							 | 
						    etc.) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | 
					
					
						
						| 
							 | 
						    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | 
					
					
						
						| 
							 | 
						    and behavior. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Parameters: | 
					
					
						
						| 
							 | 
						        config ([`InternLM2Config`]): | 
					
					
						
						| 
							 | 
						            Model configuration class with all the parameters of the model. Initializing with a config file does not | 
					
					
						
						| 
							 | 
						            load the weights associated with the model, only the configuration. Check out the | 
					
					
						
						| 
							 | 
						            [`~PreTrainedModel.from_pretrained`] method to load the model weights. | 
					
					
						
						| 
							 | 
						""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						@add_start_docstrings( | 
					
					
						
						| 
							 | 
						    "The bare InternLM2 Model outputting raw hidden-states without any specific head on top.", | 
					
					
						
						| 
							 | 
						    InternLM2_START_DOCSTRING, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						class InternLM2PreTrainedModel(PreTrainedModel): | 
					
					
						
						| 
							 | 
						    config_class = InternLM2Config | 
					
					
						
						| 
							 | 
						    base_model_prefix = "model" | 
					
					
						
						| 
							 | 
						    supports_gradient_checkpointing = True | 
					
					
						
						| 
							 | 
						    _no_split_modules = ["InternLM2DecoderLayer"] | 
					
					
						
						| 
							 | 
						    _skip_keys_device_placement = "past_key_values" | 
					
					
						
						| 
							 | 
						    _supports_flash_attn_2 = True | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _init_weights(self, module): | 
					
					
						
						| 
							 | 
						        std = self.config.initializer_range | 
					
					
						
						| 
							 | 
						        if isinstance(module, nn.Linear): | 
					
					
						
						| 
							 | 
						            module.weight.data.normal_(mean=0.0, std=std) | 
					
					
						
						| 
							 | 
						            if module.bias is not None: | 
					
					
						
						| 
							 | 
						                module.bias.data.zero_() | 
					
					
						
						| 
							 | 
						        elif isinstance(module, nn.Embedding): | 
					
					
						
						| 
							 | 
						            module.weight.data.normal_(mean=0.0, std=std) | 
					
					
						
						| 
							 | 
						            if module.padding_idx is not None: | 
					
					
						
						| 
							 | 
						                module.weight.data[module.padding_idx].zero_() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						InternLM2_INPUTS_DOCSTRING = r""" | 
					
					
						
						| 
							 | 
						    Args: | 
					
					
						
						| 
							 | 
						        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | 
					
					
						
						| 
							 | 
						            Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | 
					
					
						
						| 
							 | 
						            it. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | 
					
					
						
						| 
							 | 
						            [`PreTrainedTokenizer.__call__`] for details. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            [What are input IDs?](../glossary#input-ids) | 
					
					
						
						| 
							 | 
						        attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
					
						
						| 
							 | 
						            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            - 1 for tokens that are **not masked**, | 
					
					
						
						| 
							 | 
						            - 0 for tokens that are **masked**. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            [What are attention masks?](../glossary#attention-mask) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | 
					
					
						
						| 
							 | 
						            [`PreTrainedTokenizer.__call__`] for details. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            If `past_key_values` is used, optionally only the last `input_ids` have to be input (see | 
					
					
						
						| 
							 | 
						            `past_key_values`). | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] | 
					
					
						
						| 
							 | 
						            and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more | 
					
					
						
						| 
							 | 
						            information on the default strategy. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            - 1 indicates the head is **not masked**, | 
					
					
						
						| 
							 | 
						            - 0 indicates the head is **masked**. | 
					
					
						
						| 
							 | 
						        position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
					
						
						| 
							 | 
						            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | 
					
					
						
						| 
							 | 
						            config.n_positions - 1]`. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            [What are position IDs?](../glossary#position-ids) | 
					
					
						
						| 
							 | 
						        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or | 
					
					
						
						| 
							 | 
						            when `config.use_cache=True`): | 
					
					
						
						| 
							 | 
						            Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape | 
					
					
						
						| 
							 | 
						            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape | 
					
					
						
						| 
							 | 
						            `(batch_size, num_heads, decoder_sequence_length, embed_size_per_head)`. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention | 
					
					
						
						| 
							 | 
						            blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't | 
					
					
						
						| 
							 | 
						            have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` | 
					
					
						
						| 
							 | 
						            of shape `(batch_size, sequence_length)`. | 
					
					
						
						| 
							 | 
						        inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | 
					
					
						
						| 
							 | 
						            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | 
					
					
						
						| 
							 | 
						            is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | 
					
					
						
						| 
							 | 
						            model's internal embedding lookup matrix. | 
					
					
						
						| 
							 | 
						        use_cache (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | 
					
					
						
						| 
							 | 
						            `past_key_values`). | 
					
					
						
						| 
							 | 
						        output_attentions (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | 
					
					
						
						| 
							 | 
						            tensors for more detail. | 
					
					
						
						| 
							 | 
						        output_hidden_states (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | 
					
					
						
						| 
							 | 
						            more detail. | 
					
					
						
						| 
							 | 
						        return_dict (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | 
					
					
						
						| 
							 | 
						""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						@add_start_docstrings( | 
					
					
						
						| 
							 | 
						    "The bare InternLM2 Model outputting raw hidden-states without any specific head on top.", | 
					
					
						
						| 
							 | 
						    InternLM2_START_DOCSTRING, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						class InternLM2Model(InternLM2PreTrainedModel): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLM2DecoderLayer`] | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Args: | 
					
					
						
						| 
							 | 
						        config: InternLM2Config | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    _auto_class = "AutoModel" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__(self, config: InternLM2Config): | 
					
					
						
						| 
							 | 
						        super().__init__(config) | 
					
					
						
						| 
							 | 
						        self.padding_idx = config.pad_token_id | 
					
					
						
						| 
							 | 
						        self.vocab_size = config.vocab_size | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) | 
					
					
						
						| 
							 | 
						        self.layers = nn.ModuleList([InternLM2DecoderLayer(config) for _ in range(config.num_hidden_layers)]) | 
					
					
						
						| 
							 | 
						        self.norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.gradient_checkpointing = False | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.post_init() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def get_input_embeddings(self): | 
					
					
						
						| 
							 | 
						        return self.tok_embeddings | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def set_input_embeddings(self, value): | 
					
					
						
						| 
							 | 
						        self.tok_embeddings = value | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length): | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        combined_attention_mask = None | 
					
					
						
						| 
							 | 
						        if input_shape[-1] > 1: | 
					
					
						
						| 
							 | 
						            combined_attention_mask = _make_causal_mask( | 
					
					
						
						| 
							 | 
						                input_shape, | 
					
					
						
						| 
							 | 
						                inputs_embeds.dtype, | 
					
					
						
						| 
							 | 
						                device=inputs_embeds.device, | 
					
					
						
						| 
							 | 
						                past_key_values_length=past_key_values_length, | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if attention_mask is not None: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to( | 
					
					
						
						| 
							 | 
						                inputs_embeds.device | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            combined_attention_mask = ( | 
					
					
						
						| 
							 | 
						                expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return combined_attention_mask | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING) | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        input_ids: torch.LongTensor = None, | 
					
					
						
						| 
							 | 
						        attention_mask: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        position_ids: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        past_key_values: Optional[List[torch.FloatTensor]] = None, | 
					
					
						
						| 
							 | 
						        inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
					
						
						| 
							 | 
						        use_cache: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        output_attentions: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        output_hidden_states: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        return_dict: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						    ) -> Union[Tuple, BaseModelOutputWithPast]: | 
					
					
						
						| 
							 | 
						        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
					
						
						| 
							 | 
						        output_hidden_states = ( | 
					
					
						
						| 
							 | 
						            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        use_cache = use_cache if use_cache is not None else self.config.use_cache | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if input_ids is not None and inputs_embeds is not None: | 
					
					
						
						| 
							 | 
						            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | 
					
					
						
						| 
							 | 
						        elif input_ids is not None: | 
					
					
						
						| 
							 | 
						            batch_size, seq_length = input_ids.shape[:2] | 
					
					
						
						| 
							 | 
						        elif inputs_embeds is not None: | 
					
					
						
						| 
							 | 
						            batch_size, seq_length = inputs_embeds.shape[:2] | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            raise ValueError("You have to specify either input_ids or inputs_embeds") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        seq_length_with_past = seq_length | 
					
					
						
						| 
							 | 
						        past_key_values_length = 0 | 
					
					
						
						| 
							 | 
						        if past_key_values is not None: | 
					
					
						
						| 
							 | 
						            past_key_values_length = past_key_values[0][0].shape[2] | 
					
					
						
						| 
							 | 
						            seq_length_with_past = seq_length_with_past + past_key_values_length | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if position_ids is None: | 
					
					
						
						| 
							 | 
						            device = input_ids.device if input_ids is not None else inputs_embeds.device | 
					
					
						
						| 
							 | 
						            position_ids = torch.arange( | 
					
					
						
						| 
							 | 
						                past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            position_ids = position_ids.unsqueeze(0) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if inputs_embeds is None: | 
					
					
						
						| 
							 | 
						            inputs_embeds = self.tok_embeddings(input_ids) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if attention_mask is None: | 
					
					
						
						| 
							 | 
						            attention_mask = torch.ones( | 
					
					
						
						| 
							 | 
						                (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        attention_mask = self._prepare_decoder_attention_mask( | 
					
					
						
						| 
							 | 
						            attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        hidden_states = inputs_embeds | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self.gradient_checkpointing and self.training: | 
					
					
						
						| 
							 | 
						            if use_cache: | 
					
					
						
						| 
							 | 
						                logger.warning_once( | 
					
					
						
						| 
							 | 
						                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                use_cache = False | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        all_hidden_states = () if output_hidden_states else None | 
					
					
						
						| 
							 | 
						        all_self_attns = () if output_attentions else None | 
					
					
						
						| 
							 | 
						        next_decoder_cache = () if use_cache else None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        for idx, decoder_layer in enumerate(self.layers): | 
					
					
						
						| 
							 | 
						            if output_hidden_states: | 
					
					
						
						| 
							 | 
						                all_hidden_states += (hidden_states,) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            past_key_value = past_key_values[idx] if past_key_values is not None else None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if self.gradient_checkpointing and self.training: | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                def create_custom_forward(module): | 
					
					
						
						| 
							 | 
						                    def custom_forward(*inputs): | 
					
					
						
						| 
							 | 
						                         | 
					
					
						
						| 
							 | 
						                        return module(*inputs, output_attentions, None) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                    return custom_forward | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                layer_outputs = torch.utils.checkpoint.checkpoint( | 
					
					
						
						| 
							 | 
						                    create_custom_forward(decoder_layer), | 
					
					
						
						| 
							 | 
						                    hidden_states, | 
					
					
						
						| 
							 | 
						                    attention_mask, | 
					
					
						
						| 
							 | 
						                    position_ids, | 
					
					
						
						| 
							 | 
						                    None, | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                layer_outputs = decoder_layer( | 
					
					
						
						| 
							 | 
						                    hidden_states, | 
					
					
						
						| 
							 | 
						                    attention_mask=attention_mask, | 
					
					
						
						| 
							 | 
						                    position_ids=position_ids, | 
					
					
						
						| 
							 | 
						                    past_key_value=past_key_value, | 
					
					
						
						| 
							 | 
						                    output_attentions=output_attentions, | 
					
					
						
						| 
							 | 
						                    use_cache=use_cache, | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            hidden_states = layer_outputs[0] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if use_cache: | 
					
					
						
						| 
							 | 
						                next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if output_attentions: | 
					
					
						
						| 
							 | 
						                all_self_attns += (layer_outputs[1],) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        hidden_states = self.norm(hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if output_hidden_states: | 
					
					
						
						| 
							 | 
						            all_hidden_states += (hidden_states,) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        next_cache = next_decoder_cache if use_cache else None | 
					
					
						
						| 
							 | 
						        if not return_dict: | 
					
					
						
						| 
							 | 
						            return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) | 
					
					
						
						| 
							 | 
						        return BaseModelOutputWithPast( | 
					
					
						
						| 
							 | 
						            last_hidden_state=hidden_states, | 
					
					
						
						| 
							 | 
						            past_key_values=next_cache, | 
					
					
						
						| 
							 | 
						            hidden_states=all_hidden_states, | 
					
					
						
						| 
							 | 
						            attentions=all_self_attns, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class InternLM2ForCausalLM(InternLM2PreTrainedModel): | 
					
					
						
						| 
							 | 
						    _auto_class = "AutoModelForCausalLM" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    _tied_weights_keys = ["output.weight"] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__(self, config): | 
					
					
						
						| 
							 | 
						        super().__init__(config) | 
					
					
						
						| 
							 | 
						        self.model = InternLM2Model(config) | 
					
					
						
						| 
							 | 
						        self.vocab_size = config.vocab_size | 
					
					
						
						| 
							 | 
						        self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.post_init() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def get_input_embeddings(self): | 
					
					
						
						| 
							 | 
						        return self.model.tok_embeddings | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def set_input_embeddings(self, value): | 
					
					
						
						| 
							 | 
						        self.model.tok_embeddings = value | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def get_output_embeddings(self): | 
					
					
						
						| 
							 | 
						        return self.output | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def set_output_embeddings(self, new_embeddings): | 
					
					
						
						| 
							 | 
						        self.output = new_embeddings | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def set_decoder(self, decoder): | 
					
					
						
						| 
							 | 
						        self.model = decoder | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def get_decoder(self): | 
					
					
						
						| 
							 | 
						        return self.model | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING) | 
					
					
						
						| 
							 | 
						    @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        input_ids: torch.LongTensor = None, | 
					
					
						
						| 
							 | 
						        attention_mask: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        position_ids: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        past_key_values: Optional[List[torch.FloatTensor]] = None, | 
					
					
						
						| 
							 | 
						        inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
					
						
						| 
							 | 
						        labels: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        use_cache: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        output_attentions: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        output_hidden_states: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        return_dict: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						    ) -> Union[Tuple, CausalLMOutputWithPast]: | 
					
					
						
						| 
							 | 
						        r""" | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
					
						
						| 
							 | 
						                Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., | 
					
					
						
						| 
							 | 
						                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored | 
					
					
						
						| 
							 | 
						                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Returns: | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Example: | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        ```python | 
					
					
						
						| 
							 | 
						        >>> from transformers import AutoTokenizer, InternLM2ForCausalLM | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        >>> model = InternLM2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) | 
					
					
						
						| 
							 | 
						        >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        >>> prompt = "Hey, are you conscious? Can you talk to me?" | 
					
					
						
						| 
							 | 
						        >>> inputs = tokenizer(prompt, return_tensors="pt") | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        >>> # Generate | 
					
					
						
						| 
							 | 
						        >>> generate_ids = model.generate(inputs.input_ids, max_length=30) | 
					
					
						
						| 
							 | 
						        >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | 
					
					
						
						| 
							 | 
						        "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." | 
					
					
						
						| 
							 | 
						        ```""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
					
						
						| 
							 | 
						        output_hidden_states = ( | 
					
					
						
						| 
							 | 
						            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        outputs = self.model( | 
					
					
						
						| 
							 | 
						            input_ids=input_ids, | 
					
					
						
						| 
							 | 
						            attention_mask=attention_mask, | 
					
					
						
						| 
							 | 
						            position_ids=position_ids, | 
					
					
						
						| 
							 | 
						            past_key_values=past_key_values, | 
					
					
						
						| 
							 | 
						            inputs_embeds=inputs_embeds, | 
					
					
						
						| 
							 | 
						            use_cache=use_cache, | 
					
					
						
						| 
							 | 
						            output_attentions=output_attentions, | 
					
					
						
						| 
							 | 
						            output_hidden_states=output_hidden_states, | 
					
					
						
						| 
							 | 
						            return_dict=return_dict, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        hidden_states = outputs[0] | 
					
					
						
						| 
							 | 
						        logits = self.output(hidden_states) | 
					
					
						
						| 
							 | 
						        logits = logits.float() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        loss = None | 
					
					
						
						| 
							 | 
						        if labels is not None: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            shift_logits = logits[..., :-1, :].contiguous() | 
					
					
						
						| 
							 | 
						            shift_labels = labels[..., 1:].contiguous() | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            loss_fct = CrossEntropyLoss() | 
					
					
						
						| 
							 | 
						            shift_logits = shift_logits.view(-1, self.config.vocab_size) | 
					
					
						
						| 
							 | 
						            shift_labels = shift_labels.view(-1) | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            shift_labels = shift_labels.to(shift_logits.device) | 
					
					
						
						| 
							 | 
						            loss = loss_fct(shift_logits, shift_labels) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if not return_dict: | 
					
					
						
						| 
							 | 
						            output = (logits,) + outputs[1:] | 
					
					
						
						| 
							 | 
						            return (loss,) + output if loss is not None else output | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return CausalLMOutputWithPast( | 
					
					
						
						| 
							 | 
						            loss=loss, | 
					
					
						
						| 
							 | 
						            logits=logits, | 
					
					
						
						| 
							 | 
						            past_key_values=outputs.past_key_values, | 
					
					
						
						| 
							 | 
						            hidden_states=outputs.hidden_states, | 
					
					
						
						| 
							 | 
						            attentions=outputs.attentions, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def prepare_inputs_for_generation( | 
					
					
						
						| 
							 | 
						        self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        if past_key_values is not None: | 
					
					
						
						| 
							 | 
						            past_length = past_key_values[0][0].shape[2] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            if input_ids.shape[1] > past_length: | 
					
					
						
						| 
							 | 
						                remove_prefix_length = past_length | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                remove_prefix_length = input_ids.shape[1] - 1 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            input_ids = input_ids[:, remove_prefix_length:] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        position_ids = kwargs.get("position_ids", None) | 
					
					
						
						| 
							 | 
						        if attention_mask is not None and position_ids is None: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            position_ids = attention_mask.long().cumsum(-1) - 1 | 
					
					
						
						| 
							 | 
						            position_ids.masked_fill_(attention_mask == 0, 1) | 
					
					
						
						| 
							 | 
						            if past_key_values: | 
					
					
						
						| 
							 | 
						                position_ids = position_ids[:, -input_ids.shape[1] :] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if inputs_embeds is not None and past_key_values is None: | 
					
					
						
						| 
							 | 
						            model_inputs = {"inputs_embeds": inputs_embeds} | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            model_inputs = {"input_ids": input_ids} | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        model_inputs.update( | 
					
					
						
						| 
							 | 
						            { | 
					
					
						
						| 
							 | 
						                "position_ids": position_ids, | 
					
					
						
						| 
							 | 
						                "past_key_values": past_key_values, | 
					
					
						
						| 
							 | 
						                "use_cache": kwargs.get("use_cache"), | 
					
					
						
						| 
							 | 
						                "attention_mask": attention_mask, | 
					
					
						
						| 
							 | 
						            } | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        return model_inputs | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @staticmethod | 
					
					
						
						| 
							 | 
						    def _reorder_cache(past_key_values, beam_idx): | 
					
					
						
						| 
							 | 
						        reordered_past = () | 
					
					
						
						| 
							 | 
						        for layer_past in past_key_values: | 
					
					
						
						| 
							 | 
						            reordered_past += ( | 
					
					
						
						| 
							 | 
						                tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        return reordered_past | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = []): | 
					
					
						
						| 
							 | 
						        prompt = "" | 
					
					
						
						| 
							 | 
						        for record in history: | 
					
					
						
						| 
							 | 
						            prompt += f"""[UNUSED_TOKEN_146]user\n{record[0]}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n{record[1]}[UNUSED_TOKEN_145]\n""" | 
					
					
						
						| 
							 | 
						        prompt += f"""[UNUSED_TOKEN_146]user\n{query}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n""" | 
					
					
						
						| 
							 | 
						        print(prompt) | 
					
					
						
						| 
							 | 
						        return tokenizer([prompt], return_tensors="pt") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @torch.no_grad() | 
					
					
						
						| 
							 | 
						    def chat( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        tokenizer, | 
					
					
						
						| 
							 | 
						        query: str, | 
					
					
						
						| 
							 | 
						        history: List[Tuple[str, str]] = [], | 
					
					
						
						| 
							 | 
						        streamer: Optional[BaseStreamer] = None, | 
					
					
						
						| 
							 | 
						        max_new_tokens: int = 1024, | 
					
					
						
						| 
							 | 
						        do_sample: bool = True, | 
					
					
						
						| 
							 | 
						        temperature: float = 0.8, | 
					
					
						
						| 
							 | 
						        top_p: float = 0.8, | 
					
					
						
						| 
							 | 
						        **kwargs, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        inputs = self.build_inputs(tokenizer, query, history) | 
					
					
						
						| 
							 | 
						        inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)} | 
					
					
						
						| 
							 | 
						        outputs = self.generate( | 
					
					
						
						| 
							 | 
						            **inputs, | 
					
					
						
						| 
							 | 
						            streamer=streamer, | 
					
					
						
						| 
							 | 
						            max_new_tokens=max_new_tokens, | 
					
					
						
						| 
							 | 
						            do_sample=do_sample, | 
					
					
						
						| 
							 | 
						            temperature=temperature, | 
					
					
						
						| 
							 | 
						            top_p=top_p, | 
					
					
						
						| 
							 | 
						            **kwargs, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        outputs = outputs[0].cpu().tolist()[len(inputs["input_ids"][0]) :] | 
					
					
						
						| 
							 | 
						        response = tokenizer.decode(outputs, skip_special_tokens=True) | 
					
					
						
						| 
							 | 
						        response = response.split("[UNUSED_TOKEN_145]")[0] | 
					
					
						
						| 
							 | 
						        history = history + [(query, response)] | 
					
					
						
						| 
							 | 
						        return response, history | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @torch.no_grad() | 
					
					
						
						| 
							 | 
						    def stream_chat( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        tokenizer, | 
					
					
						
						| 
							 | 
						        query: str, | 
					
					
						
						| 
							 | 
						        history: List[Tuple[str, str]] = [], | 
					
					
						
						| 
							 | 
						        max_new_tokens: int = 1024, | 
					
					
						
						| 
							 | 
						        do_sample: bool = True, | 
					
					
						
						| 
							 | 
						        temperature: float = 0.8, | 
					
					
						
						| 
							 | 
						        top_p: float = 0.8, | 
					
					
						
						| 
							 | 
						        **kwargs, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        Return a generator in format: (response, history) | 
					
					
						
						| 
							 | 
						        Eg. | 
					
					
						
						| 
							 | 
						        ('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')]) | 
					
					
						
						| 
							 | 
						        ('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')]) | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        if BaseStreamer is None: | 
					
					
						
						| 
							 | 
						            raise ModuleNotFoundError( | 
					
					
						
						| 
							 | 
						                "The version of `transformers` is too low. Please make sure " | 
					
					
						
						| 
							 | 
						                "that you have installed `transformers>=4.28.0`." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        response_queue = queue.Queue(maxsize=20) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        class ChatStreamer(BaseStreamer): | 
					
					
						
						| 
							 | 
						            def __init__(self, tokenizer) -> None: | 
					
					
						
						| 
							 | 
						                super().__init__() | 
					
					
						
						| 
							 | 
						                self.tokenizer = tokenizer | 
					
					
						
						| 
							 | 
						                self.queue = response_queue | 
					
					
						
						| 
							 | 
						                self.query = query | 
					
					
						
						| 
							 | 
						                self.history = history | 
					
					
						
						| 
							 | 
						                self.response = "" | 
					
					
						
						| 
							 | 
						                self.received_inputs = False | 
					
					
						
						| 
							 | 
						                self.queue.put((self.response, history + [(self.query, self.response)])) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            def put(self, value): | 
					
					
						
						| 
							 | 
						                if len(value.shape) > 1 and value.shape[0] > 1: | 
					
					
						
						| 
							 | 
						                    raise ValueError("ChatStreamer only supports batch size 1") | 
					
					
						
						| 
							 | 
						                elif len(value.shape) > 1: | 
					
					
						
						| 
							 | 
						                    value = value[0] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                if not self.received_inputs: | 
					
					
						
						| 
							 | 
						                     | 
					
					
						
						| 
							 | 
						                    self.received_inputs = True | 
					
					
						
						| 
							 | 
						                    return | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                token = self.tokenizer.decode([value[-1]], skip_special_tokens=True) | 
					
					
						
						| 
							 | 
						                if token.strip() != "[UNUSED_TOKEN_145]": | 
					
					
						
						| 
							 | 
						                    self.response = self.response + token | 
					
					
						
						| 
							 | 
						                    history = self.history + [(self.query, self.response)] | 
					
					
						
						| 
							 | 
						                    self.queue.put((self.response, history)) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            def end(self): | 
					
					
						
						| 
							 | 
						                self.queue.put(None) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        def stream_producer(): | 
					
					
						
						| 
							 | 
						            return self.chat( | 
					
					
						
						| 
							 | 
						                tokenizer=tokenizer, | 
					
					
						
						| 
							 | 
						                query=query, | 
					
					
						
						| 
							 | 
						                streamer=ChatStreamer(tokenizer=tokenizer), | 
					
					
						
						| 
							 | 
						                history=history, | 
					
					
						
						| 
							 | 
						                max_new_tokens=max_new_tokens, | 
					
					
						
						| 
							 | 
						                do_sample=do_sample, | 
					
					
						
						| 
							 | 
						                temperature=temperature, | 
					
					
						
						| 
							 | 
						                top_p=top_p, | 
					
					
						
						| 
							 | 
						                **kwargs, | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        def consumer(): | 
					
					
						
						| 
							 | 
						            producer = threading.Thread(target=stream_producer) | 
					
					
						
						| 
							 | 
						            producer.start() | 
					
					
						
						| 
							 | 
						            while True: | 
					
					
						
						| 
							 | 
						                res = response_queue.get() | 
					
					
						
						| 
							 | 
						                if res is None: | 
					
					
						
						| 
							 | 
						                    return | 
					
					
						
						| 
							 | 
						                yield res | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return consumer() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						@add_start_docstrings( | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    The InternLM2 Model transformer with a sequence classification head on top (linear layer). | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    [`InternLM2ForSequenceClassification`] uses the last token in order to do the classification, | 
					
					
						
						| 
							 | 
						    as other causal models (e.g. GPT-2) do. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Since it does classification on the last token, it requires to know the position of the last token. If a | 
					
					
						
						| 
							 | 
						    `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If | 
					
					
						
						| 
							 | 
						    no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the | 
					
					
						
						| 
							 | 
						    padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in | 
					
					
						
						| 
							 | 
						    each row of the batch). | 
					
					
						
						| 
							 | 
						    """, | 
					
					
						
						| 
							 | 
						    InternLM2_START_DOCSTRING, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						class InternLM2ForSequenceClassification(InternLM2PreTrainedModel): | 
					
					
						
						| 
							 | 
						    def __init__(self, config): | 
					
					
						
						| 
							 | 
						        super().__init__(config) | 
					
					
						
						| 
							 | 
						        self.num_labels = config.num_labels | 
					
					
						
						| 
							 | 
						        self.model = InternLM2Model(config) | 
					
					
						
						| 
							 | 
						        self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.post_init() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def get_input_embeddings(self): | 
					
					
						
						| 
							 | 
						        return self.model.tok_embeddings | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def set_input_embeddings(self, value): | 
					
					
						
						| 
							 | 
						        self.model.tok_embeddings = value | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING) | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        input_ids: torch.LongTensor = None, | 
					
					
						
						| 
							 | 
						        attention_mask: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        position_ids: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        past_key_values: Optional[List[torch.FloatTensor]] = None, | 
					
					
						
						| 
							 | 
						        inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
					
						
						| 
							 | 
						        labels: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        use_cache: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        output_attentions: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        output_hidden_states: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        return_dict: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						    ) -> Union[Tuple, SequenceClassifierOutputWithPast]: | 
					
					
						
						| 
							 | 
						        r""" | 
					
					
						
						| 
							 | 
						        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | 
					
					
						
						| 
							 | 
						            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | 
					
					
						
						| 
							 | 
						            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | 
					
					
						
						| 
							 | 
						            `config.num_labels > 1` a classification loss is computed (Cross-Entropy). | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        transformer_outputs = self.model( | 
					
					
						
						| 
							 | 
						            input_ids, | 
					
					
						
						| 
							 | 
						            attention_mask=attention_mask, | 
					
					
						
						| 
							 | 
						            position_ids=position_ids, | 
					
					
						
						| 
							 | 
						            past_key_values=past_key_values, | 
					
					
						
						| 
							 | 
						            inputs_embeds=inputs_embeds, | 
					
					
						
						| 
							 | 
						            use_cache=use_cache, | 
					
					
						
						| 
							 | 
						            output_attentions=output_attentions, | 
					
					
						
						| 
							 | 
						            output_hidden_states=output_hidden_states, | 
					
					
						
						| 
							 | 
						            return_dict=return_dict, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        hidden_states = transformer_outputs[0] | 
					
					
						
						| 
							 | 
						        logits = self.score(hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if input_ids is not None: | 
					
					
						
						| 
							 | 
						            batch_size = input_ids.shape[0] | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            batch_size = inputs_embeds.shape[0] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self.config.pad_token_id is None and batch_size != 1: | 
					
					
						
						| 
							 | 
						            raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") | 
					
					
						
						| 
							 | 
						        if self.config.pad_token_id is None: | 
					
					
						
						| 
							 | 
						            sequence_lengths = -1 | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            if input_ids is not None: | 
					
					
						
						| 
							 | 
						                sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to( | 
					
					
						
						| 
							 | 
						                    logits.device | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                sequence_lengths = -1 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        loss = None | 
					
					
						
						| 
							 | 
						        if labels is not None: | 
					
					
						
						| 
							 | 
						            labels = labels.to(logits.device) | 
					
					
						
						| 
							 | 
						            if self.config.problem_type is None: | 
					
					
						
						| 
							 | 
						                if self.num_labels == 1: | 
					
					
						
						| 
							 | 
						                    self.config.problem_type = "regression" | 
					
					
						
						| 
							 | 
						                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | 
					
					
						
						| 
							 | 
						                    self.config.problem_type = "single_label_classification" | 
					
					
						
						| 
							 | 
						                else: | 
					
					
						
						| 
							 | 
						                    self.config.problem_type = "multi_label_classification" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if self.config.problem_type == "regression": | 
					
					
						
						| 
							 | 
						                loss_fct = MSELoss() | 
					
					
						
						| 
							 | 
						                if self.num_labels == 1: | 
					
					
						
						| 
							 | 
						                    loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) | 
					
					
						
						| 
							 | 
						                else: | 
					
					
						
						| 
							 | 
						                    loss = loss_fct(pooled_logits, labels) | 
					
					
						
						| 
							 | 
						            elif self.config.problem_type == "single_label_classification": | 
					
					
						
						| 
							 | 
						                loss_fct = CrossEntropyLoss() | 
					
					
						
						| 
							 | 
						                loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) | 
					
					
						
						| 
							 | 
						            elif self.config.problem_type == "multi_label_classification": | 
					
					
						
						| 
							 | 
						                loss_fct = BCEWithLogitsLoss() | 
					
					
						
						| 
							 | 
						                loss = loss_fct(pooled_logits, labels) | 
					
					
						
						| 
							 | 
						        if not return_dict: | 
					
					
						
						| 
							 | 
						            output = (pooled_logits,) + transformer_outputs[1:] | 
					
					
						
						| 
							 | 
						            return ((loss,) + output) if loss is not None else output | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return SequenceClassifierOutputWithPast( | 
					
					
						
						| 
							 | 
						            loss=loss, | 
					
					
						
						| 
							 | 
						            logits=pooled_logits, | 
					
					
						
						| 
							 | 
						            past_key_values=transformer_outputs.past_key_values, | 
					
					
						
						| 
							 | 
						            hidden_states=transformer_outputs.hidden_states, | 
					
					
						
						| 
							 | 
						            attentions=transformer_outputs.attentions, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 |