upload model
Browse files- .gitattributes +3 -0
- LICENSE +212 -0
- README.md +372 -3
- README_zh-CN.md +386 -0
- config.json +37 -0
- configuration_internlm2.py +180 -0
- misc/intro.jpeg +3 -0
- misc/logo.png +0 -0
- misc/result.png +3 -0
- modeling_internlm2.py +1995 -0
- pytorch_model-00001-of-00008.bin +3 -0
- pytorch_model-00002-of-00008.bin +3 -0
- pytorch_model-00003-of-00008.bin +3 -0
- pytorch_model-00004-of-00008.bin +3 -0
- pytorch_model-00005-of-00008.bin +3 -0
- pytorch_model-00006-of-00008.bin +3 -0
- pytorch_model-00007-of-00008.bin +3 -0
- pytorch_model-00008-of-00008.bin +3 -0
- pytorch_model.bin.index.json +234 -0
- special_tokens_map.json +39 -0
- tokenization_internlm2.py +236 -0
- tokenization_internlm2_fast.py +214 -0
- tokenizer.json +3 -0
- tokenizer.model +3 -0
- tokenizer_config.json +121 -0
- xtuner_config.py +187 -0
    	
        .gitattributes
    CHANGED
    
    | @@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text | |
| 33 | 
             
            *.zip filter=lfs diff=lfs merge=lfs -text
         | 
| 34 | 
             
            *.zst filter=lfs diff=lfs merge=lfs -text
         | 
| 35 | 
             
            *tfevents* filter=lfs diff=lfs merge=lfs -text
         | 
|  | |
|  | |
|  | 
|  | |
| 33 | 
             
            *.zip filter=lfs diff=lfs merge=lfs -text
         | 
| 34 | 
             
            *.zst filter=lfs diff=lfs merge=lfs -text
         | 
| 35 | 
             
            *tfevents* filter=lfs diff=lfs merge=lfs -text
         | 
| 36 | 
            +
            misc/intro.jpeg filter=lfs diff=lfs merge=lfs -text
         | 
| 37 | 
            +
            misc/result.png filter=lfs diff=lfs merge=lfs -text
         | 
| 38 | 
            +
            tokenizer.json filter=lfs diff=lfs merge=lfs -text
         | 
    	
        LICENSE
    ADDED
    
    | @@ -0,0 +1,212 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
                                             Apache License
         | 
| 2 | 
            +
                                       Version 2.0, January 2004
         | 
| 3 | 
            +
                                    http://www.apache.org/licenses/
         | 
| 4 | 
            +
             | 
| 5 | 
            +
               TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
         | 
| 6 | 
            +
             | 
| 7 | 
            +
               1. Definitions.
         | 
| 8 | 
            +
             | 
| 9 | 
            +
                  "License" shall mean the terms and conditions for use, reproduction,
         | 
| 10 | 
            +
                  and distribution as defined by Sections 1 through 9 of this document.
         | 
| 11 | 
            +
             | 
| 12 | 
            +
                  "Licensor" shall mean the copyright owner or entity authorized by
         | 
| 13 | 
            +
                  the copyright owner that is granting the License.
         | 
| 14 | 
            +
             | 
| 15 | 
            +
                  "Legal Entity" shall mean the union of the acting entity and all
         | 
| 16 | 
            +
                  other entities that control, are controlled by, or are under common
         | 
| 17 | 
            +
                  control with that entity. For the purposes of this definition,
         | 
| 18 | 
            +
                  "control" means (i) the power, direct or indirect, to cause the
         | 
| 19 | 
            +
                  direction or management of such entity, whether by contract or
         | 
| 20 | 
            +
                  otherwise, or (ii) ownership of fifty percent (50%) or more of the
         | 
| 21 | 
            +
                  outstanding shares, or (iii) beneficial ownership of such entity.
         | 
| 22 | 
            +
             | 
| 23 | 
            +
                  "You" (or "Your") shall mean an individual or Legal Entity
         | 
| 24 | 
            +
                  exercising permissions granted by this License.
         | 
| 25 | 
            +
             | 
| 26 | 
            +
                  "Source" form shall mean the preferred form for making modifications,
         | 
| 27 | 
            +
                  including but not limited to software source code, documentation
         | 
| 28 | 
            +
                  source, and configuration files.
         | 
| 29 | 
            +
             | 
| 30 | 
            +
                  "Object" form shall mean any form resulting from mechanical
         | 
| 31 | 
            +
                  transformation or translation of a Source form, including but
         | 
| 32 | 
            +
                  not limited to compiled object code, generated documentation,
         | 
| 33 | 
            +
                  and conversions to other media types.
         | 
| 34 | 
            +
             | 
| 35 | 
            +
                  "Work" shall mean the work of authorship, whether in Source or
         | 
| 36 | 
            +
                  Object form, made available under the License, as indicated by a
         | 
| 37 | 
            +
                  copyright notice that is included in or attached to the work
         | 
| 38 | 
            +
                  (an example is provided in the Appendix below).
         | 
| 39 | 
            +
             | 
| 40 | 
            +
                  "Derivative Works" shall mean any work, whether in Source or Object
         | 
| 41 | 
            +
                  form, that is based on (or derived from) the Work and for which the
         | 
| 42 | 
            +
                  editorial revisions, annotations, elaborations, or other modifications
         | 
| 43 | 
            +
                  represent, as a whole, an original work of authorship. For the purposes
         | 
| 44 | 
            +
                  of this License, Derivative Works shall not include works that remain
         | 
| 45 | 
            +
                  separable from, or merely link (or bind by name) to the interfaces of,
         | 
| 46 | 
            +
                  the Work and Derivative Works thereof.
         | 
| 47 | 
            +
             | 
| 48 | 
            +
                  "Contribution" shall mean any work of authorship, including
         | 
| 49 | 
            +
                  the original version of the Work and any modifications or additions
         | 
| 50 | 
            +
                  to that Work or Derivative Works thereof, that is intentionally
         | 
| 51 | 
            +
                  submitted to Licensor for inclusion in the Work by the copyright owner
         | 
| 52 | 
            +
                  or by an individual or Legal Entity authorized to submit on behalf of
         | 
| 53 | 
            +
                  the copyright owner. For the purposes of this definition, "submitted"
         | 
| 54 | 
            +
                  means any form of electronic, verbal, or written communication sent
         | 
| 55 | 
            +
                  to the Licensor or its representatives, including but not limited to
         | 
| 56 | 
            +
                  communication on electronic mailing lists, source code control systems,
         | 
| 57 | 
            +
                  and issue tracking systems that are managed by, or on behalf of, the
         | 
| 58 | 
            +
                  Licensor for the purpose of discussing and improving the Work, but
         | 
| 59 | 
            +
                  excluding communication that is conspicuously marked or otherwise
         | 
| 60 | 
            +
                  designated in writing by the copyright owner as "Not a Contribution."
         | 
| 61 | 
            +
             | 
| 62 | 
            +
                  "Contributor" shall mean Licensor and any individual or Legal Entity
         | 
| 63 | 
            +
                  on behalf of whom a Contribution has been received by Licensor and
         | 
| 64 | 
            +
                  subsequently incorporated within the Work.
         | 
| 65 | 
            +
             | 
| 66 | 
            +
               2. Grant of Copyright License. Subject to the terms and conditions of
         | 
| 67 | 
            +
                  this License, each Contributor hereby grants to You a perpetual,
         | 
| 68 | 
            +
                  worldwide, non-exclusive, no-charge, royalty-free, irrevocable
         | 
| 69 | 
            +
                  copyright license to reproduce, prepare Derivative Works of,
         | 
| 70 | 
            +
                  publicly display, publicly perform, sublicense, and distribute the
         | 
| 71 | 
            +
                  Work and such Derivative Works in Source or Object form.
         | 
| 72 | 
            +
             | 
| 73 | 
            +
               3. Grant of Patent License. Subject to the terms and conditions of
         | 
| 74 | 
            +
                  this License, each Contributor hereby grants to You a perpetual,
         | 
| 75 | 
            +
                  worldwide, non-exclusive, no-charge, royalty-free, irrevocable
         | 
| 76 | 
            +
                  (except as stated in this section) patent license to make, have made,
         | 
| 77 | 
            +
                  use, offer to sell, sell, import, and otherwise transfer the Work,
         | 
| 78 | 
            +
                  where such license applies only to those patent claims licensable
         | 
| 79 | 
            +
                  by such Contributor that are necessarily infringed by their
         | 
| 80 | 
            +
                  Contribution(s) alone or by combination of their Contribution(s)
         | 
| 81 | 
            +
                  with the Work to which such Contribution(s) was submitted. If You
         | 
| 82 | 
            +
                  institute patent litigation against any entity (including a
         | 
| 83 | 
            +
                  cross-claim or counterclaim in a lawsuit) alleging that the Work
         | 
| 84 | 
            +
                  or a Contribution incorporated within the Work constitutes direct
         | 
| 85 | 
            +
                  or contributory patent infringement, then any patent licenses
         | 
| 86 | 
            +
                  granted to You under this License for that Work shall terminate
         | 
| 87 | 
            +
                  as of the date such litigation is filed.
         | 
| 88 | 
            +
             | 
| 89 | 
            +
               4. Redistribution. You may reproduce and distribute copies of the
         | 
| 90 | 
            +
                  Work or Derivative Works thereof in any medium, with or without
         | 
| 91 | 
            +
                  modifications, and in Source or Object form, provided that You
         | 
| 92 | 
            +
                  meet the following conditions:
         | 
| 93 | 
            +
             | 
| 94 | 
            +
                  (a) You must give any other recipients of the Work or
         | 
| 95 | 
            +
                      Derivative Works a copy of this License; and
         | 
| 96 | 
            +
             | 
| 97 | 
            +
                  (b) You must cause any modified files to carry prominent notices
         | 
| 98 | 
            +
                      stating that You changed the files; and
         | 
| 99 | 
            +
             | 
| 100 | 
            +
                  (c) You must retain, in the Source form of any Derivative Works
         | 
| 101 | 
            +
                      that You distribute, all copyright, patent, trademark, and
         | 
| 102 | 
            +
                      attribution notices from the Source form of the Work,
         | 
| 103 | 
            +
                      excluding those notices that do not pertain to any part of
         | 
| 104 | 
            +
                      the Derivative Works; and
         | 
| 105 | 
            +
             | 
| 106 | 
            +
                  (d) If the Work includes a "NOTICE" text file as part of its
         | 
| 107 | 
            +
                      distribution, then any Derivative Works that You distribute must
         | 
| 108 | 
            +
                      include a readable copy of the attribution notices contained
         | 
| 109 | 
            +
                      within such NOTICE file, excluding those notices that do not
         | 
| 110 | 
            +
                      pertain to any part of the Derivative Works, in at least one
         | 
| 111 | 
            +
                      of the following places: within a NOTICE text file distributed
         | 
| 112 | 
            +
                      as part of the Derivative Works; within the Source form or
         | 
| 113 | 
            +
                      documentation, if provided along with the Derivative Works; or,
         | 
| 114 | 
            +
                      within a display generated by the Derivative Works, if and
         | 
| 115 | 
            +
                      wherever such third-party notices normally appear. The contents
         | 
| 116 | 
            +
                      of the NOTICE file are for informational purposes only and
         | 
| 117 | 
            +
                      do not modify the License. You may add Your own attribution
         | 
| 118 | 
            +
                      notices within Derivative Works that You distribute, alongside
         | 
| 119 | 
            +
                      or as an addendum to the NOTICE text from the Work, provided
         | 
| 120 | 
            +
                      that such additional attribution notices cannot be construed
         | 
| 121 | 
            +
                      as modifying the License.
         | 
| 122 | 
            +
             | 
| 123 | 
            +
                  You may add Your own copyright statement to Your modifications and
         | 
| 124 | 
            +
                  may provide additional or different license terms and conditions
         | 
| 125 | 
            +
                  for use, reproduction, or distribution of Your modifications, or
         | 
| 126 | 
            +
                  for any such Derivative Works as a whole, provided Your use,
         | 
| 127 | 
            +
                  reproduction, and distribution of the Work otherwise complies with
         | 
| 128 | 
            +
                  the conditions stated in this License.
         | 
| 129 | 
            +
             | 
| 130 | 
            +
               5. Submission of Contributions. Unless You explicitly state otherwise,
         | 
| 131 | 
            +
                  any Contribution intentionally submitted for inclusion in the Work
         | 
| 132 | 
            +
                  by You to the Licensor shall be under the terms and conditions of
         | 
| 133 | 
            +
                  this License, without any additional terms or conditions.
         | 
| 134 | 
            +
                  Notwithstanding the above, nothing herein shall supersede or modify
         | 
| 135 | 
            +
                  the terms of any separate license agreement you may have executed
         | 
| 136 | 
            +
                  with Licensor regarding such Contributions.
         | 
| 137 | 
            +
             | 
| 138 | 
            +
               6. Trademarks. This License does not grant permission to use the trade
         | 
| 139 | 
            +
                  names, trademarks, service marks, or product names of the Licensor,
         | 
| 140 | 
            +
                  except as required for reasonable and customary use in describing the
         | 
| 141 | 
            +
                  origin of the Work and reproducing the content of the NOTICE file.
         | 
| 142 | 
            +
             | 
| 143 | 
            +
               7. Disclaimer of Warranty. Unless required by applicable law or
         | 
| 144 | 
            +
                  agreed to in writing, Licensor provides the Work (and each
         | 
| 145 | 
            +
                  Contributor provides its Contributions) on an "AS IS" BASIS,
         | 
| 146 | 
            +
                  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
         | 
| 147 | 
            +
                  implied, including, without limitation, any warranties or conditions
         | 
| 148 | 
            +
                  of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
         | 
| 149 | 
            +
                  PARTICULAR PURPOSE. You are solely responsible for determining the
         | 
| 150 | 
            +
                  appropriateness of using or redistributing the Work and assume any
         | 
| 151 | 
            +
                  risks associated with Your exercise of permissions under this License.
         | 
| 152 | 
            +
             | 
| 153 | 
            +
               8. Limitation of Liability. In no event and under no legal theory,
         | 
| 154 | 
            +
                  whether in tort (including negligence), contract, or otherwise,
         | 
| 155 | 
            +
                  unless required by applicable law (such as deliberate and grossly
         | 
| 156 | 
            +
                  negligent acts) or agreed to in writing, shall any Contributor be
         | 
| 157 | 
            +
                  liable to You for damages, including any direct, indirect, special,
         | 
| 158 | 
            +
                  incidental, or consequential damages of any character arising as a
         | 
| 159 | 
            +
                  result of this License or out of the use or inability to use the
         | 
| 160 | 
            +
                  Work (including but not limited to damages for loss of goodwill,
         | 
| 161 | 
            +
                  work stoppage, computer failure or malfunction, or any and all
         | 
| 162 | 
            +
                  other commercial damages or losses), even if such Contributor
         | 
| 163 | 
            +
                  has been advised of the possibility of such damages.
         | 
| 164 | 
            +
             | 
| 165 | 
            +
               9. Accepting Warranty or Additional Liability. While redistributing
         | 
| 166 | 
            +
                  the Work or Derivative Works thereof, You may choose to offer,
         | 
| 167 | 
            +
                  and charge a fee for, acceptance of support, warranty, indemnity,
         | 
| 168 | 
            +
                  or other liability obligations and/or rights consistent with this
         | 
| 169 | 
            +
                  License. However, in accepting such obligations, You may act only
         | 
| 170 | 
            +
                  on Your own behalf and on Your sole responsibility, not on behalf
         | 
| 171 | 
            +
                  of any other Contributor, and only if You agree to indemnify,
         | 
| 172 | 
            +
                  defend, and hold each Contributor harmless for any liability
         | 
| 173 | 
            +
                  incurred by, or claims asserted against, such Contributor by reason
         | 
| 174 | 
            +
                  of your accepting any such warranty or additional liability.
         | 
| 175 | 
            +
             | 
| 176 | 
            +
               END OF TERMS AND CONDITIONS
         | 
| 177 | 
            +
             | 
| 178 | 
            +
               APPENDIX: How to apply the Apache License to your work.
         | 
| 179 | 
            +
             | 
| 180 | 
            +
                  To apply the Apache License to your work, attach the following
         | 
| 181 | 
            +
                  boilerplate notice, with the fields enclosed by brackets "[]"
         | 
| 182 | 
            +
                  replaced with your own identifying information. (Don't include
         | 
| 183 | 
            +
                  the brackets!)  The text should be enclosed in the appropriate
         | 
| 184 | 
            +
                  comment syntax for the file format. We also recommend that a
         | 
| 185 | 
            +
                  file or class name and description of purpose be included on the
         | 
| 186 | 
            +
                  same "printed page" as the copyright notice for easier
         | 
| 187 | 
            +
                  identification within third-party archives.
         | 
| 188 | 
            +
             | 
| 189 | 
            +
               Copyright 2023-2025 Shanghai AI Laboratory
         | 
| 190 | 
            +
             | 
| 191 | 
            +
               Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 192 | 
            +
               you may not use this file except in compliance with the License.
         | 
| 193 | 
            +
               You may obtain a copy of the License at
         | 
| 194 | 
            +
             | 
| 195 | 
            +
                   http://www.apache.org/licenses/LICENSE-2.0
         | 
| 196 | 
            +
             | 
| 197 | 
            +
               Unless required by applicable law or agreed to in writing, software
         | 
| 198 | 
            +
               distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 199 | 
            +
               WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 200 | 
            +
               See the License for the specific language governing permissions and
         | 
| 201 | 
            +
               limitations under the License.
         | 
| 202 | 
            +
             | 
| 203 | 
            +
            THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
         | 
| 204 | 
            +
            AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
         | 
| 205 | 
            +
            IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
         | 
| 206 | 
            +
            DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
         | 
| 207 | 
            +
            FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
         | 
| 208 | 
            +
            DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
         | 
| 209 | 
            +
            SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
         | 
| 210 | 
            +
            CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
         | 
| 211 | 
            +
            OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
         | 
| 212 | 
            +
            OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
         | 
    	
        README.md
    CHANGED
    
    | @@ -1,3 +1,372 @@ | |
| 1 | 
            -
             | 
| 2 | 
            -
             | 
| 3 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            <div align="center">
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            <img src="./misc/logo.png" width="400"/><br>
         | 
| 4 | 
            +
             | 
| 5 | 
            +
             | 
| 6 | 
            +
            [](./LICENSE)
         | 
| 7 | 
            +
            [](https://github.com/InternLM/xtuner/)
         | 
| 8 | 
            +
            [](https://github.com/InternLM/lmdeploy/)
         | 
| 9 | 
            +
            [](https://github.com/sgl-project/sglang/)
         | 
| 10 | 
            +
            [](https://github.com/vllm-project/vllm/)
         | 
| 11 | 
            +
             | 
| 12 | 
            +
             | 
| 13 | 
            +
            [💻 Github](https://github.com/InternLM/POLAR) |
         | 
| 14 | 
            +
            [📜 Paper](https://arxiv.org/abs/xxxxxx)<br>
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            [English](./README.md) |
         | 
| 17 | 
            +
            [简体中文](./README_zh-CN.md)
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            </div>
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            # Introduction
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            POLAR represents a significant breakthrough in scalar-based reward models achieved through large-scale pre-training. It leverages the innovative **POL**icy Discrimin**A**tive Lea**R**ning (**POLAR**) paradigm——a scalable, high-level optimization objective——to effectively discriminate between policies using a large-scale synthetic corpora. Following pre-training, POLAR RMs are fine-tuned with minimal preference data, rapidly aligning with human preferences. Key features of POLAR include:
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            * **Innovative Pre-training Paradigm:**  POLAR trains a reward model to discern identical policies and discriminate different ones. Unlike traditional reward modeling methods relying on absolute preferences, POLAR captures the relative difference between two policies, which is a scalable, high-level optimization objective suitable for modeling generic ranking relationships.
         | 
| 26 | 
            +
             | 
| 27 | 
            +
            * **Tailored for Reinforcement Fine-tuning:** POLAR assigns rewards to LLM trajectories based on given references, perfectly aligning with the Reinforcement Fine-tuning (RFT) framework. POLAR provides a promising solution for applying RFT in generic scenarios.
         | 
| 28 | 
            +
             | 
| 29 | 
            +
            * **Superior Performance and Generalization:** POLAR achieves state-of-the-art results on downstream reinforcement learning tasks, consistently delivering accurate and reliable reward signals that generalize effectively to unseen scenarios and significantly reducing reward hacking.
         | 
| 30 | 
            +
             | 
| 31 | 
            +
            * **Easy to Customize:** Pre-trained checkpoints of POLAR are available, enabling researchers to conveniently fine-tune the RM for various customized scenarios, thus facilitating straightforward adaptation and expansion tailored to specific applications and experimental requirements.
         | 
| 32 | 
            +
             | 
| 33 | 
            +
            <img src="./misc/intro.jpeg"/><br>
         | 
| 34 | 
            +
             | 
| 35 | 
            +
             | 
| 36 | 
            +
            # POLAR-7B-Base
         | 
| 37 | 
            +
             | 
| 38 | 
            +
            **POLAR-7B-Base** refers to the pre-trained-only checkpoint, ideal for customized fine-tuning according to specific preferences. The "ready-to-use" checkpoint **POLAR-7B** has been already fine-tuned on general preference data, making it suitable for immediate use in most scenarios.
         | 
| 39 | 
            +
             | 
| 40 | 
            +
            We conducted a comprehensive evaluation of POLAR-7B via the Proximal Policy Optimization (PPO) algorithm. We evaluate the downstream RL performances of four different policy models using [OpenCompass](https://github.com/internLM/OpenCompass/). More details are available in our [Paper](https://arxiv.org/abs/xxxxxx).
         | 
| 41 | 
            +
             | 
| 42 | 
            +
            <img src="./misc/result.png"/><br>
         | 
| 43 | 
            +
             | 
| 44 | 
            +
            # Quick Start
         | 
| 45 | 
            +
             | 
| 46 | 
            +
            ## Installation
         | 
| 47 | 
            +
             | 
| 48 | 
            +
            You could employ the latest [xtuner](https://github.com/InternLM/xtuner) to fine-tune and use POLAR. Xtuner is an efficient, flexible and full-featured toolkit for fine-tuning LLMs.
         | 
| 49 | 
            +
             | 
| 50 | 
            +
            - It is recommended to build a Python-3.10 virtual environment using conda
         | 
| 51 | 
            +
             | 
| 52 | 
            +
              ```bash
         | 
| 53 | 
            +
              conda create --name xtuner-env python=3.10 -y
         | 
| 54 | 
            +
              conda activate xtuner-env
         | 
| 55 | 
            +
              ```
         | 
| 56 | 
            +
             | 
| 57 | 
            +
            - Install xtuner via pip
         | 
| 58 | 
            +
             | 
| 59 | 
            +
              ```shell
         | 
| 60 | 
            +
              pip install 'git+https://github.com/InternLM/xtuner.git@main#egg=xtuner[deepspeed]'
         | 
| 61 | 
            +
              ```
         | 
| 62 | 
            +
             | 
| 63 | 
            +
            ## Inference
         | 
| 64 | 
            +
             | 
| 65 | 
            +
            We support reward inference through [lmdeploy](https://github.com/InternLM/lmdeploy/), [sglang](https://github.com/sgl-project/sglang/), and [vllm](https://github.com/vllm-project/vllm/). We recommend setting up a virtual environment with conda when using these inference engines to prevent potential dependency conflicts.
         | 
| 66 | 
            +
             | 
| 67 | 
            +
            ### Data format
         | 
| 68 | 
            +
             | 
| 69 | 
            +
            Unlike traditional reward models, POLAR requires an additional reference trajectory as a demonstration and evaluate candidate trajectories by measuring their consistency with the provided reference.
         | 
| 70 | 
            +
             | 
| 71 | 
            +
            ```python
         | 
| 72 | 
            +
            data = [
         | 
| 73 | 
            +
                {
         | 
| 74 | 
            +
                    "prompt": [{"role": "user", "content": "What is the capital of China?"}],
         | 
| 75 | 
            +
                    "reference": [{"role": "assistant", "content": "Beijing."}],
         | 
| 76 | 
            +
                    "output": [{"role": "assistant", "content": "Beijing."}]
         | 
| 77 | 
            +
                },
         | 
| 78 | 
            +
                {
         | 
| 79 | 
            +
                    "prompt": [{"role": "user", "content": "What is the capital of China?"}],
         | 
| 80 | 
            +
                    "reference": [{"role": "assistant", "content": "Beijing."}],
         | 
| 81 | 
            +
                    "output": [{"role": "assistant", "content": "Shanghai."}]
         | 
| 82 | 
            +
                }
         | 
| 83 | 
            +
            ]
         | 
| 84 | 
            +
            ```
         | 
| 85 | 
            +
             | 
| 86 | 
            +
            ### Inference with transformers
         | 
| 87 | 
            +
             | 
| 88 | 
            +
            #### Reward request
         | 
| 89 | 
            +
            To load the POLAR model using transformers, use the following code to get rewards:
         | 
| 90 | 
            +
             | 
| 91 | 
            +
            ```python
         | 
| 92 | 
            +
            from transformers import AutoModel, AutoTokenizer
         | 
| 93 | 
            +
            from xtuner.utils import RewardModelClient
         | 
| 94 | 
            +
             | 
| 95 | 
            +
            model_name = 'internlm/POLAR-7B'
         | 
| 96 | 
            +
             | 
| 97 | 
            +
            model = AutoModel.from_pretrained(
         | 
| 98 | 
            +
                model_name,
         | 
| 99 | 
            +
                device_map="cuda", 
         | 
| 100 | 
            +
                trust_remote_code=True
         | 
| 101 | 
            +
            )
         | 
| 102 | 
            +
            tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
         | 
| 103 | 
            +
             | 
| 104 | 
            +
            client = RewardModelClient(model_name)
         | 
| 105 | 
            +
            encoded_data = client.encode(data)
         | 
| 106 | 
            +
            batch = tokenizer(encoded_data, return_tensors='pt', padding=True).to('cuda')
         | 
| 107 | 
            +
            outputs = model(**batch)
         | 
| 108 | 
            +
            rewards = outputs[0].squeeze(-1).cpu().tolist()
         | 
| 109 | 
            +
            print(rewards)
         | 
| 110 | 
            +
            ```
         | 
| 111 | 
            +
             | 
| 112 | 
            +
            ### Inference with lmdeploy
         | 
| 113 | 
            +
             | 
| 114 | 
            +
            [LMDeploy](https://github.com/InternLM/lmdeploy) is a toolkit for compressing, deploying, and serving LLMs.
         | 
| 115 | 
            +
             | 
| 116 | 
            +
            #### Requirements
         | 
| 117 | 
            +
             | 
| 118 | 
            +
            - lmdeploy >= 0.9.1
         | 
| 119 | 
            +
             | 
| 120 | 
            +
            #### Server Launch
         | 
| 121 | 
            +
             | 
| 122 | 
            +
            ```bash
         | 
| 123 | 
            +
            lmdeploy serve api_server internlm/POLAR-7B --backend pytorch --server-port 30000
         | 
| 124 | 
            +
            ```
         | 
| 125 | 
            +
            #### Client Request
         | 
| 126 | 
            +
             | 
| 127 | 
            +
            ```python
         | 
| 128 | 
            +
            from xtuner.utils import RewardModelClient
         | 
| 129 | 
            +
             | 
| 130 | 
            +
            client = RewardModelClient("internlm/POLAR-7B",
         | 
| 131 | 
            +
                                       server_type="lmdeploy",
         | 
| 132 | 
            +
                                       server_address="127.0.0.1:30000")
         | 
| 133 | 
            +
             | 
| 134 | 
            +
            # Request rewards directly
         | 
| 135 | 
            +
            rewards = client(data)
         | 
| 136 | 
            +
            print(rewards)
         | 
| 137 | 
            +
             | 
| 138 | 
            +
            # First encode data and then get rewards via the request function.
         | 
| 139 | 
            +
            encoded_data = client.encode(data)
         | 
| 140 | 
            +
            rewards = client.lmdeploy_request_reward(encoded_data)
         | 
| 141 | 
            +
            print(rewards)
         | 
| 142 | 
            +
            ```
         | 
| 143 | 
            +
             | 
| 144 | 
            +
            ### Inference with sglang
         | 
| 145 | 
            +
             | 
| 146 | 
            +
            #### Requirements
         | 
| 147 | 
            +
             | 
| 148 | 
            +
            - sglang >= 0.4.3.post4
         | 
| 149 | 
            +
             | 
| 150 | 
            +
            #### Server Launch
         | 
| 151 | 
            +
             | 
| 152 | 
            +
            ```bash
         | 
| 153 | 
            +
            python3 -m sglang.launch_server --model internlm/POLAR-7B --trust-remote-code --is-embedding --dp 4 --tp 2 --mem-fraction-static 0.9 --port 30000
         | 
| 154 | 
            +
            ```
         | 
| 155 | 
            +
             | 
| 156 | 
            +
            #### Client Request
         | 
| 157 | 
            +
             | 
| 158 | 
            +
            ```python
         | 
| 159 | 
            +
            from xtuner.utils import RewardModelClient
         | 
| 160 | 
            +
             | 
| 161 | 
            +
            client = RewardModelClient("internlm/POLAR-7B",
         | 
| 162 | 
            +
                                       server_type="sglang",
         | 
| 163 | 
            +
                                       server_address="127.0.0.1:30000")
         | 
| 164 | 
            +
             | 
| 165 | 
            +
            # Request rewards directly
         | 
| 166 | 
            +
            rewards = client(data)
         | 
| 167 | 
            +
            print(rewards)
         | 
| 168 | 
            +
             | 
| 169 | 
            +
            # First encode data and then get rewards via the request function.
         | 
| 170 | 
            +
            encoded_data = client.encode(data)
         | 
| 171 | 
            +
            rewards = client.sglang_request_reward(encoded_data)
         | 
| 172 | 
            +
            print(rewards)
         | 
| 173 | 
            +
            ```
         | 
| 174 | 
            +
             | 
| 175 | 
            +
            ### Inference with vllm
         | 
| 176 | 
            +
             | 
| 177 | 
            +
            #### Requirements
         | 
| 178 | 
            +
             | 
| 179 | 
            +
            - vllm >= 0.8.0
         | 
| 180 | 
            +
             | 
| 181 | 
            +
            #### Server Launch
         | 
| 182 | 
            +
             | 
| 183 | 
            +
            ```bash
         | 
| 184 | 
            +
            vllm serve internlm/POLAR-7B --task=reward --trust-remote-code --tensor-parallel-size=2 --port 30000
         | 
| 185 | 
            +
            ```
         | 
| 186 | 
            +
             | 
| 187 | 
            +
            #### Client Request
         | 
| 188 | 
            +
             | 
| 189 | 
            +
            ```python
         | 
| 190 | 
            +
            from xtuner.utils import RewardModelClient
         | 
| 191 | 
            +
             | 
| 192 | 
            +
            client = RewardModelClient("internlm/POLAR-7B",
         | 
| 193 | 
            +
                                       server_type="vllm",
         | 
| 194 | 
            +
                                       server_address="127.0.0.1:30000")
         | 
| 195 | 
            +
             | 
| 196 | 
            +
            # Request rewards directly
         | 
| 197 | 
            +
            rewards = client(data)
         | 
| 198 | 
            +
            print(rewards)
         | 
| 199 | 
            +
             | 
| 200 | 
            +
            # First encode data and then get rewards via the request function.
         | 
| 201 | 
            +
            encoded_data = client.encode(data)
         | 
| 202 | 
            +
            rewards = client.vllm_request_reward(encoded_data)
         | 
| 203 | 
            +
            print(rewards)
         | 
| 204 | 
            +
            ```
         | 
| 205 | 
            +
             | 
| 206 | 
            +
            ## Fine-tune
         | 
| 207 | 
            +
             | 
| 208 | 
            +
            ### Requirements
         | 
| 209 | 
            +
             | 
| 210 | 
            +
            - flash_attn
         | 
| 211 | 
            +
            - tensorboard
         | 
| 212 | 
            +
             | 
| 213 | 
            +
            ### Data format
         | 
| 214 | 
            +
             | 
| 215 | 
            +
            Unlike traditional reward models, POLAR requires an additional reference trajectory as a demonstration during fine-tuning, along with a chosen trajectory and a rejected trajectory. You can construct your fine-tuning data in a `train.jsonl` file, formatted as follows:
         | 
| 216 | 
            +
             | 
| 217 | 
            +
            ```json
         | 
| 218 | 
            +
            {
         | 
| 219 | 
            +
                "prompt": [{"role": "user", "content": "What is the capital of China?"}],
         | 
| 220 | 
            +
                "reference": [{"role": "assistant", "content": "Beijing."}],
         | 
| 221 | 
            +
                "chosen": [{"role": "assistant", "content": "Beijing."}],
         | 
| 222 | 
            +
                "rejected": [{"role": "assistant", "content": "Shanghai."}]
         | 
| 223 | 
            +
            }
         | 
| 224 | 
            +
            ```
         | 
| 225 | 
            +
             | 
| 226 | 
            +
            ### Training steps
         | 
| 227 | 
            +
             | 
| 228 | 
            +
            - **Step 0:** Prepare the config. We provide examplar ready-to-use configs [here](https://github.com/InternLM/POLAR/blob/main/examples/xtuner_configs/POLAR_7B_full_varlenattn_custom_dataset.py). If the provided configs cannot meet the requirements, please copy the provided config and do modification following the [xtuner guideline](https://github.com/InternLM/xtuner/blob/main/docs/en/get_started/quickstart.md). For more details of reward model training settings, please see the xtuner [reward model guideline](https://github.com/InternLM/xtuner/blob/main/docs/en/reward_model/modify_settings.md).
         | 
| 229 | 
            +
             | 
| 230 | 
            +
            - **Step 1:** Start fine-tuning.
         | 
| 231 | 
            +
             | 
| 232 | 
            +
                ```shell
         | 
| 233 | 
            +
                xtuner train ${CONFIG_FILE_PATH}
         | 
| 234 | 
            +
                ```
         | 
| 235 | 
            +
             | 
| 236 | 
            +
              For example, you can start the fine-tuning of POLAR-7B-Base by
         | 
| 237 | 
            +
             | 
| 238 | 
            +
              ```shell
         | 
| 239 | 
            +
              # On a single GPU
         | 
| 240 | 
            +
              xtuner train /path/to/POLAR_7B_full_varlenattn_custom_dataset.py --deepspeed deepspeed_zero2
         | 
| 241 | 
            +
             | 
| 242 | 
            +
              # On multiple GPUs
         | 
| 243 | 
            +
              NPROC_PER_NODE=${GPU_NUM} xtuner train /path/to/POLAR_7B_full_varlenattn_custom_dataset.py --deepspeed deepspeed_zero2
         | 
| 244 | 
            +
              ```
         | 
| 245 | 
            +
             | 
| 246 | 
            +
              Here, `--deepspeed` means using [DeepSpeed](https://github.com/microsoft/DeepSpeed) to optimize the training. Xtuner comes with several integrated strategies including ZeRO-1, ZeRO-2, and ZeRO-3. If you wish to disable this feature, simply remove this argument.
         | 
| 247 | 
            +
             | 
| 248 | 
            +
            - **Step 2:** Convert the saved PTH model (if using DeepSpeed, it will be a directory) to Hugging Face model, by
         | 
| 249 | 
            +
             | 
| 250 | 
            +
              ```shell
         | 
| 251 | 
            +
              xtuner convert pth_to_hf ${CONFIG_FILE_PATH} ${PTH} ${SAVE_PATH}
         | 
| 252 | 
            +
              ```
         | 
| 253 | 
            +
             | 
| 254 | 
            +
            # Examples
         | 
| 255 | 
            +
             | 
| 256 | 
            +
            ## Closed-ended questions
         | 
| 257 | 
            +
             | 
| 258 | 
            +
            ```python
         | 
| 259 | 
            +
            from xtuner.utils import RewardModelClient
         | 
| 260 | 
            +
             | 
| 261 | 
            +
            prompt = "How many 'r's are there in the word 'strawberry'?"
         | 
| 262 | 
            +
            reference = "There are 3 'r's in the word 'strawberry'. Here's how we can count them: 's', 't', 'r', 'a', 'w', 'b', 'e', 'r', 'r', 'y'. So, the answer is 3."
         | 
| 263 | 
            +
            outputs = [
         | 
| 264 | 
            +
                # Same as the reference response.
         | 
| 265 | 
            +
                "There are 3 'r's in the word 'strawberry'. Here's how we can count them: 's', 't', 'r', 'a', 'w', 'b', 'e', 'r', 'r', 'y'. So, the answer is 3.", 
         | 
| 266 | 
            +
                # Correct answer with correct thoughts.
         | 
| 267 | 
            +
                "Let's count the 'r's in 'strawberry': 's', 't', 'r', 'a', 'w', 'b', 'e', 'r', 'r', 'y'. There are three 'r's, so the answer is three.",  
         | 
| 268 | 
            +
                # Wrong answer with wrong thoughts.
         | 
| 269 | 
            +
                "Let's count the 'r's in 'strawberry': 's', 't', 'r', 'a', 'w', 'b', 'e', 'r', 'r', 'y'. There are two 'r's, so the answer is two.",
         | 
| 270 | 
            +
                # Wrong answer with correct thoughts.
         | 
| 271 | 
            +
                "Let's count the 'r's in 'strawberry': 's', 't', 'r', 'a', 'w', 'b', 'e', 'r', 'r', 'y'. There are three 'r's, so the answer is two.", 
         | 
| 272 | 
            +
                # Correct answer with wrong thoughts.
         | 
| 273 | 
            +
                "Let's count the 'r's in 'strawberry': 's', 't', 'r', 'a', 'w', 'b', 'e', 'r', 'r', 'y'. There are two 'r's, so the answer is three.", 
         | 
| 274 | 
            +
                # Correct answer without thoughts.
         | 
| 275 | 
            +
                "There are 3 'r's in the word 'strawberry'.",
         | 
| 276 | 
            +
                # Wrong answer without thoughts.
         | 
| 277 | 
            +
                "There are 2 'r's in the word 'strawberry'.",
         | 
| 278 | 
            +
            ]
         | 
| 279 | 
            +
            data = [{"prompt": prompt, "reference": reference, "output": output} for output in outputs]
         | 
| 280 | 
            +
             | 
| 281 | 
            +
            client = RewardModelClient("internlm/POLAR-7B", server_type="sglang", server_address="127.0.0.1:30000")
         | 
| 282 | 
            +
            rewards = client(data)
         | 
| 283 | 
            +
             | 
| 284 | 
            +
            sorted_res = sorted(zip(outputs, rewards), key=lambda x: x[1], reverse=True)
         | 
| 285 | 
            +
             | 
| 286 | 
            +
            for output, reward in sorted_res:
         | 
| 287 | 
            +
                print(f"Output: {output}\nReward: {reward}\n")
         | 
| 288 | 
            +
            ```
         | 
| 289 | 
            +
             | 
| 290 | 
            +
            ```txt
         | 
| 291 | 
            +
            Output: There are 3 'r's in the word 'strawberry'. Here's how we can count them: 's', 't', 'r', 'a', 'w', 'b', 'e', 'r', 'r', 'y'. So, the answer is 3.
         | 
| 292 | 
            +
            Reward: 0.054595947265625
         | 
| 293 | 
            +
             | 
| 294 | 
            +
            Output: Let's count the 'r's in 'strawberry': 's', 't', 'r', 'a', 'w', 'b', 'e', 'r', 'r', 'y'. There are three 'r's, so the answer is three.
         | 
| 295 | 
            +
            Reward: -2.005859375
         | 
| 296 | 
            +
             | 
| 297 | 
            +
            Output: There are 3 'r's in the word 'strawberry'.
         | 
| 298 | 
            +
            Reward: -6.70703125
         | 
| 299 | 
            +
             | 
| 300 | 
            +
            Output: Let's count the 'r's in 'strawberry': 's', 't', 'r', 'a', 'w', 'b', 'e', 'r', 'r', 'y'. There are two 'r's, so the answer is three.
         | 
| 301 | 
            +
            Reward: -7.10546875
         | 
| 302 | 
            +
             | 
| 303 | 
            +
            Output: Let's count the 'r's in 'strawberry': 's', 't', 'r', 'a', 'w', 'b', 'e', 'r', 'r', 'y'. There are three 'r's, so the answer is two.
         | 
| 304 | 
            +
            Reward: -7.1328125
         | 
| 305 | 
            +
             | 
| 306 | 
            +
            Output: Let's count the 'r's in 'strawberry': 's', 't', 'r', 'a', 'w', 'b', 'e', 'r', 'r', 'y'. There are two 'r's, so the answer is two.
         | 
| 307 | 
            +
            Reward: -8.46875
         | 
| 308 | 
            +
             | 
| 309 | 
            +
            Output: There are 2 'r's in the word 'strawberry'.
         | 
| 310 | 
            +
            Reward: -10.8203125
         | 
| 311 | 
            +
            ```
         | 
| 312 | 
            +
             | 
| 313 | 
            +
            ## Open-ended questions
         | 
| 314 | 
            +
            ```python
         | 
| 315 | 
            +
            from xtuner.utils import RewardModelClient
         | 
| 316 | 
            +
             | 
| 317 | 
            +
            prompt = "Summarize the first book of Frank Herbert’s Dune in one witty short sentence."
         | 
| 318 | 
            +
            reference = "Royal teen discovers that life’s a beach—minus the ocean, plus spice, giant sandworms and deadly politics."
         | 
| 319 | 
            +
            outputs = [
         | 
| 320 | 
            +
                # Same as the reference response.
         | 
| 321 | 
            +
                "Royal teen discovers that life’s a beach—minus the ocean, plus spice, giant sandworms and deadly politics.",
         | 
| 322 | 
            +
                # Closely resembles the reference response but includes factual errors.
         | 
| 323 | 
            +
                "Royal teen discovers that life’s a beach—minus the ocean, plus magic, dark wizards and deadly politics.",
         | 
| 324 | 
            +
                # A distinct yet concise and witty summary that draws analogies from other dramas—markedly different from the reference response.
         | 
| 325 | 
            +
                "Young noble’s move to desert planet turns into galactic Game of Thrones with fewer dragons, more worms.",
         | 
| 326 | 
            +
                # A concise summary, but lacking wit—fails to meet the requirement.
         | 
| 327 | 
            +
                "A noble family’s fall sparks a young heir’s rise as a leader on a harsh desert planet governed by prophecy and survival.",
         | 
| 328 | 
            +
                # A witty summary, but overly long—fails to meet the requirement.
         | 
| 329 | 
            +
                "Paul Atreides loses his father, gains prophetic powers, learns to ride a sandworm, leads a holy war, and discovers that being the chosen one comes with a lot of blood, sand, and questionable decisions.",
         | 
| 330 | 
            +
                # A concise and witty summary that draws from multiple Dune books rather than just the first—fails to follow the instruction.
         | 
| 331 | 
            +
                "Boy gets planet, becomes god, loses soul — family drama ensues across galaxies."
         | 
| 332 | 
            +
            ]
         | 
| 333 | 
            +
            data = [{"prompt": prompt, "reference": reference, "output": output} for output in outputs]
         | 
| 334 | 
            +
             | 
| 335 | 
            +
            client = RewardModelClient("internlm/POLAR-7B", server_type="sglang", server_address="127.0.0.1:30000")
         | 
| 336 | 
            +
            rewards = client(data)
         | 
| 337 | 
            +
             | 
| 338 | 
            +
            sorted_res = sorted(zip(outputs, rewards), key=lambda x: x[1], reverse=True)
         | 
| 339 | 
            +
             | 
| 340 | 
            +
            for output, reward in sorted_res:
         | 
| 341 | 
            +
                print(f"Output: {output}\nReward: {reward}\n")
         | 
| 342 | 
            +
            ```
         | 
| 343 | 
            +
             | 
| 344 | 
            +
            ```txt
         | 
| 345 | 
            +
            Output: Royal teen discovers that life’s a beach—minus the ocean, plus spice, giant sandworms and deadly politics.
         | 
| 346 | 
            +
            Reward: 0.466552734375
         | 
| 347 | 
            +
             | 
| 348 | 
            +
            Output: Young noble’s move to desert planet turns into galactic Game of Thrones with fewer dragons, more worms.
         | 
| 349 | 
            +
            Reward: -6.91796875
         | 
| 350 | 
            +
             | 
| 351 | 
            +
            Output: Royal teen discovers that life’s a beach—minus the ocean, plus magic, dark wizards and deadly politics.
         | 
| 352 | 
            +
            Reward: -7.70703125
         | 
| 353 | 
            +
             | 
| 354 | 
            +
            Output: Paul Atreides loses his father, gains prophetic powers, learns to ride a sandworm, leads a holy war, and discovers that being the chosen one comes with a lot of blood, sand, and questionable decisions.
         | 
| 355 | 
            +
            Reward: -8.4296875
         | 
| 356 | 
            +
             | 
| 357 | 
            +
            Output: A noble family’s fall sparks a young heir’s rise as a leader on a harsh desert planet governed by prophecy and survival.
         | 
| 358 | 
            +
            Reward: -8.6484375
         | 
| 359 | 
            +
             | 
| 360 | 
            +
            Output: Boy gets planet, becomes god, loses soul — family drama ensues across galaxies.
         | 
| 361 | 
            +
            Reward: -10.359375
         | 
| 362 | 
            +
            ```
         | 
| 363 | 
            +
             | 
| 364 | 
            +
            # License
         | 
| 365 | 
            +
             | 
| 366 | 
            +
            Code and model weights are licensed under Apache-2.0.
         | 
| 367 | 
            +
             | 
| 368 | 
            +
            # Citation
         | 
| 369 | 
            +
             | 
| 370 | 
            +
            ```
         | 
| 371 | 
            +
            TBC
         | 
| 372 | 
            +
            ```
         | 
    	
        README_zh-CN.md
    ADDED
    
    | @@ -0,0 +1,386 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            <div align="center">
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            <img src="./misc/logo.png" width="400"/><br>
         | 
| 4 | 
            +
             | 
| 5 | 
            +
             | 
| 6 | 
            +
            [](./LICENSE)
         | 
| 7 | 
            +
            [](https://github.com/InternLM/xtuner/)
         | 
| 8 | 
            +
            [](https://github.com/InternLM/lmdeploy/)
         | 
| 9 | 
            +
            [](https://github.com/sgl-project/sglang/)
         | 
| 10 | 
            +
            [](https://github.com/vllm-project/vllm/)
         | 
| 11 | 
            +
             | 
| 12 | 
            +
             | 
| 13 | 
            +
            [💻 Github](https://github.com/InternLM/POLAR) |
         | 
| 14 | 
            +
            [📜 论文](https://arxiv.org/abs/xxxxxx)<br>
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            [English](./README.md) |
         | 
| 17 | 
            +
            [简体中文](./README_zh-CN.md)
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            </div>
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            # 简介
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            POLAR 是一个经过大规模预训练的奖励模型,在训练范式和模型性能上取得了重大突破。我们利用全新的策略判别学习方法(Policy Discriminative Learning,POLAR),使用大规模合成语料进行高效扩展预训练,使奖励模型能够有效区分不同的语言模型和策略分布。经过预训练的 POLAR 可通过少量的偏好数据进行微调,以快速对齐人类偏好。POLAR 的主要特点包括:
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            * **全新的预训练范式**:POLAR 让奖励模型学会识别相同的策略并区分不同的策略。与传统的依赖绝对偏好的奖励建模方法不同,POLAR 能够学习两个策略之间的相对差异,是一种可扩展的、高层次的优化目标。
         | 
| 26 | 
            +
             | 
| 27 | 
            +
            * **专为强化学习微调(RFT)设计:**  POLAR 根据给定的参考答案为语言模型的输出打分,完美契合强化学习微调(RFT)框架,为强化学习微调在通用场景的应用提供了一种有效解决方案。
         | 
| 28 | 
            +
             | 
| 29 | 
            +
            * **卓越的性能与泛化能力:** POLAR 在下游强化学习任务中展现出领先的水平,可稳定地提供准确可靠的奖励信号。POLAR 具有极强的泛化能力,可有效泛化到分布外场景,并显著减少奖励黑客(Reward Hacking)的现象。
         | 
| 30 | 
            +
             | 
| 31 | 
            +
            * **易于定制化:**  我们提供了 POLAR 的预训练权重(POLAR-Base)。研究人员可以根据自身需求,便捷地对其进行微调以适配各种定制化场景。
         | 
| 32 | 
            +
             | 
| 33 | 
            +
            <br><img src="./misc/intro.jpeg"/><br>
         | 
| 34 | 
            +
             | 
| 35 | 
            +
             | 
| 36 | 
            +
            # POLAR-7B-Base
         | 
| 37 | 
            +
             | 
| 38 | 
            +
            **POLAR-7B-Base** 是仅经过预训练阶段的权重,适合根据特定需求进行微调。**POLAR-7B** 是经过偏好微调的奖励模型,可开箱即用,适用于大部分通用场景。
         | 
| 39 | 
            +
             | 
| 40 | 
            +
            我们通过 Proximal Policy Optimization(PPO)算法对 POLAR 的使用效果进行了验证,评测了四种语言模型的下游强化学习性能,评测工具是 [OpenCompass](https://github.com/internLM/OpenCompass/) 。详细信息请参阅[论文](https://arxiv.org/abs/xxxxxx)。
         | 
| 41 | 
            +
             | 
| 42 | 
            +
            <img src="./misc/result.png"/><br>
         | 
| 43 | 
            +
             | 
| 44 | 
            +
            # 快速开始
         | 
| 45 | 
            +
             | 
| 46 | 
            +
            ## 安装
         | 
| 47 | 
            +
             | 
| 48 | 
            +
            推荐使用最新的 [xtuner](https://github.com/InternLM/xtuner) 来微调和使用 POLAR。xtuner 是一个高效、灵活、具有多种使用特性的语言模型微调工具。
         | 
| 49 | 
            +
             | 
| 50 | 
            +
            - 建议使用 conda 创建 Python-3.10 虚拟环境:
         | 
| 51 | 
            +
             | 
| 52 | 
            +
              ```bash
         | 
| 53 | 
            +
              conda create --name xtuner-env python=3.10 -y
         | 
| 54 | 
            +
              conda activate xtuner-env
         | 
| 55 | 
            +
              ```
         | 
| 56 | 
            +
             | 
| 57 | 
            +
            - 通过 pip 安装 xtuner:
         | 
| 58 | 
            +
             | 
| 59 | 
            +
              ```shell
         | 
| 60 | 
            +
              pip install 'git+https://github.com/InternLM/xtuner.git@main#egg=xtuner[deepspeed]'
         | 
| 61 | 
            +
              ```
         | 
| 62 | 
            +
             | 
| 63 | 
            +
            ## 推理
         | 
| 64 | 
            +
             | 
| 65 | 
            +
            我们支持通过 [lmdeploy](https://github.com/InternLM/lmdeploy/)、[sglang](https://github.com/sgl-project/sglang/)、[vllm](https://github.com/vllm-project/vllm/) 对 POLAR 进行推理并获取奖励信号。建议在使用这些推理引擎时,创建 conda 虚拟环境,以避免可能出现的依赖冲突问题。
         | 
| 66 | 
            +
             | 
| 67 | 
            +
            ### 数据格式
         | 
| 68 | 
            +
             | 
| 69 | 
            +
            与传统奖励模型不同,POLAR 需要额外的参考答案。POLAR 对模型输出轨迹与参考答案的一致性进行评估,并给出奖励分数。
         | 
| 70 | 
            +
             | 
| 71 | 
            +
            ```python
         | 
| 72 | 
            +
            data = [
         | 
| 73 | 
            +
                {
         | 
| 74 | 
            +
                    "prompt": [{"role": "user", "content": "What is the capital of China?"}],
         | 
| 75 | 
            +
                    "reference": [{"role": "assistant", "content": "Beijing."}],
         | 
| 76 | 
            +
                    "output": [{"role": "assistant", "content": "Beijing."}]
         | 
| 77 | 
            +
                },
         | 
| 78 | 
            +
                {
         | 
| 79 | 
            +
                    "prompt": [{"role": "user", "content": "What is the capital of China?"}],
         | 
| 80 | 
            +
                    "reference": [{"role": "assistant", "content": "Beijing."}],
         | 
| 81 | 
            +
                    "output": [{"role": "assistant", "content": "Shanghai."}]
         | 
| 82 | 
            +
                }
         | 
| 83 | 
            +
            ]
         | 
| 84 | 
            +
            ```
         | 
| 85 | 
            +
             | 
| 86 | 
            +
            ### 使用 transformers 进行推理
         | 
| 87 | 
            +
             | 
| 88 | 
            +
            #### 示例代码
         | 
| 89 | 
            +
             | 
| 90 | 
            +
            ```python
         | 
| 91 | 
            +
            from transformers import AutoModel, AutoTokenizer
         | 
| 92 | 
            +
            from xtuner.utils import RewardModelClient
         | 
| 93 | 
            +
             | 
| 94 | 
            +
            model_name = 'internlm/POLAR-7B'
         | 
| 95 | 
            +
             | 
| 96 | 
            +
            model = AutoModel.from_pretrained(
         | 
| 97 | 
            +
                model_name,
         | 
| 98 | 
            +
                device_map="cuda", 
         | 
| 99 | 
            +
                trust_remote_code=True
         | 
| 100 | 
            +
            )
         | 
| 101 | 
            +
            tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
         | 
| 102 | 
            +
             | 
| 103 | 
            +
            client = RewardModelClient(model_name)
         | 
| 104 | 
            +
            encoded_data = client.encode(data)
         | 
| 105 | 
            +
            batch = tokenizer(encoded_data, return_tensors='pt', padding=True).to('cuda')
         | 
| 106 | 
            +
            outputs = model(**batch)
         | 
| 107 | 
            +
            rewards = outputs[0].squeeze(-1).cpu().tolist()
         | 
| 108 | 
            +
            print(rewards)
         | 
| 109 | 
            +
            ```
         | 
| 110 | 
            +
             | 
| 111 | 
            +
            ### 使用 lmdeploy 进行推理
         | 
| 112 | 
            +
             | 
| 113 | 
            +
            [LMDeploy](https://github.com/InternLM/lmdeploy) 是一个高效压缩、部署���言模型的工具。
         | 
| 114 | 
            +
             | 
| 115 | 
            +
            #### 环境依赖
         | 
| 116 | 
            +
             | 
| 117 | 
            +
            - lmdeploy >= 0.9.1
         | 
| 118 | 
            +
             | 
| 119 | 
            +
            #### 启动服务端
         | 
| 120 | 
            +
             | 
| 121 | 
            +
            ```bash
         | 
| 122 | 
            +
            lmdeploy serve api_server internlm/POLAR-7B --backend pytorch --server-port 30000
         | 
| 123 | 
            +
            ```
         | 
| 124 | 
            +
            #### 客户端请求示例
         | 
| 125 | 
            +
             | 
| 126 | 
            +
            ```python
         | 
| 127 | 
            +
            from xtuner.utils import RewardModelClient
         | 
| 128 | 
            +
             | 
| 129 | 
            +
            client = RewardModelClient("internlm/POLAR-7B",
         | 
| 130 | 
            +
                                       server_type="lmdeploy",
         | 
| 131 | 
            +
                                       server_address="127.0.0.1:30000")
         | 
| 132 | 
            +
             | 
| 133 | 
            +
            # Request rewards directly
         | 
| 134 | 
            +
            rewards = client(data)
         | 
| 135 | 
            +
            print(rewards)
         | 
| 136 | 
            +
             | 
| 137 | 
            +
            # First encode data and then get rewards via the request function.
         | 
| 138 | 
            +
            encoded_data = client.encode(data)
         | 
| 139 | 
            +
            rewards = client.lmdeploy_request_reward(encoded_data)
         | 
| 140 | 
            +
            print(rewards)
         | 
| 141 | 
            +
            ```
         | 
| 142 | 
            +
             | 
| 143 | 
            +
            ### 使用 sglang 进行推理
         | 
| 144 | 
            +
             | 
| 145 | 
            +
            #### 环境依赖
         | 
| 146 | 
            +
             | 
| 147 | 
            +
            - sglang >= 0.4.3.post4
         | 
| 148 | 
            +
             | 
| 149 | 
            +
            #### 启动服务端
         | 
| 150 | 
            +
             | 
| 151 | 
            +
            ```bash
         | 
| 152 | 
            +
            python3 -m sglang.launch_server --model internlm/POLAR-7B --trust-remote-code --is-embedding --dp 4 --tp 2 --mem-fraction-static 0.9 --port 30000
         | 
| 153 | 
            +
            ```
         | 
| 154 | 
            +
             | 
| 155 | 
            +
            #### 客户端请求示例
         | 
| 156 | 
            +
             | 
| 157 | 
            +
            ```python
         | 
| 158 | 
            +
            from xtuner.utils import RewardModelClient
         | 
| 159 | 
            +
             | 
| 160 | 
            +
            client = RewardModelClient("internlm/POLAR-7B",
         | 
| 161 | 
            +
                                       server_type="sglang",
         | 
| 162 | 
            +
                                       server_address="127.0.0.1:30000")
         | 
| 163 | 
            +
             | 
| 164 | 
            +
            # Request rewards directly
         | 
| 165 | 
            +
            rewards = client(data)
         | 
| 166 | 
            +
            print(rewards)
         | 
| 167 | 
            +
             | 
| 168 | 
            +
            # First encode data and then get rewards via the request function.
         | 
| 169 | 
            +
            encoded_data = client.encode(data)
         | 
| 170 | 
            +
            rewards = client.sglang_request_reward(encoded_data)
         | 
| 171 | 
            +
            print(rewards)
         | 
| 172 | 
            +
            ```
         | 
| 173 | 
            +
             | 
| 174 | 
            +
            ### 使用 vllm 进行推理
         | 
| 175 | 
            +
             | 
| 176 | 
            +
            #### 环境依赖
         | 
| 177 | 
            +
             | 
| 178 | 
            +
            - vllm >= 0.8.0
         | 
| 179 | 
            +
             | 
| 180 | 
            +
            #### 启动服务端
         | 
| 181 | 
            +
             | 
| 182 | 
            +
            ```bash
         | 
| 183 | 
            +
            vllm serve internlm/POLAR-7B --task=reward --trust-remote-code --tensor-parallel-size=2 --port 30000
         | 
| 184 | 
            +
            ```
         | 
| 185 | 
            +
             | 
| 186 | 
            +
            #### 客户端请求示例
         | 
| 187 | 
            +
             | 
| 188 | 
            +
            ```python
         | 
| 189 | 
            +
            from xtuner.utils import RewardModelClient
         | 
| 190 | 
            +
             | 
| 191 | 
            +
            client = RewardModelClient("internlm/POLAR-7B",
         | 
| 192 | 
            +
                                       server_type="vllm",
         | 
| 193 | 
            +
                                       server_address="127.0.0.1:30000")
         | 
| 194 | 
            +
             | 
| 195 | 
            +
            # Request rewards directly
         | 
| 196 | 
            +
            rewards = client(data)
         | 
| 197 | 
            +
            print(rewards)
         | 
| 198 | 
            +
             | 
| 199 | 
            +
            # First encode data and then get rewards via the request function.
         | 
| 200 | 
            +
            encoded_data = client.encode(data)
         | 
| 201 | 
            +
            rewards = client.vllm_request_reward(encoded_data)
         | 
| 202 | 
            +
            print(rewards)
         | 
| 203 | 
            +
            ```
         | 
| 204 | 
            +
             | 
| 205 | 
            +
            ## 偏好微调
         | 
| 206 | 
            +
             | 
| 207 | 
            +
            ### 环境依赖
         | 
| 208 | 
            +
             | 
| 209 | 
            +
            - flash_attn
         | 
| 210 | 
            +
            - tensorboard
         | 
| 211 | 
            +
             | 
| 212 | 
            +
            ### 数据格式
         | 
| 213 | 
            +
             | 
| 214 | 
            +
            与传统的奖励模型不同,除了 chosen 轨迹和 rejected 轨迹,POLAR 在微调过程中还需要一个额外的参考答案作为示范。你可以通过构建一个 `train.jsonl` 的文件来准备微调数据,格式如下:
         | 
| 215 | 
            +
             | 
| 216 | 
            +
            ```json
         | 
| 217 | 
            +
            {
         | 
| 218 | 
            +
                "prompt": [{"role": "user", "content": "What is the capital of China?"}],
         | 
| 219 | 
            +
                "reference": [{"role": "assistant", "content": "Beijing."}],
         | 
| 220 | 
            +
                "chosen": [{"role": "assistant", "content": "Beijing."}],
         | 
| 221 | 
            +
                "rejected": [{"role": "assistant", "content": "Shanghai."}]
         | 
| 222 | 
            +
            }
         | 
| 223 | 
            +
            ```
         | 
| 224 | 
            +
             | 
| 225 | 
            +
            ### 训练步骤
         | 
| 226 | 
            +
             | 
| 227 | 
            +
            - **第一步:** 准备配置文件。我们提供了可直接使用的[示例配置](./examples/xtuner_configs/POLAR_7B_full_varlenattn_custom_dataset.py)。如果需要进一步对超参进行修改,请复制一份示例配置文件,并根据 [xtuner 使用指南](https://github.com/InternLM/xtuner/blob/main/docs/en/get_started/quickstart.md) 进行修改。有关奖励模型训练设置的更多信息,请参考 [xtuner 奖励模型](https://github.com/InternLM/xtuner/blob/main/docs/en/reward_model/modify_settings.md)。
         | 
| 228 | 
            +
             | 
| 229 | 
            +
            - **第二步:** 启动微调。
         | 
| 230 | 
            +
             | 
| 231 | 
            +
                ```shell
         | 
| 232 | 
            +
                xtuner train ${CONFIG_FILE_PATH}
         | 
| 233 | 
            +
                ```
         | 
| 234 | 
            +
             | 
| 235 | 
            +
                例如,你可以按照如下的方式微调 POLAR-7B-Base:
         | 
| 236 | 
            +
              ```shell
         | 
| 237 | 
            +
              # On a single GPU
         | 
| 238 | 
            +
              xtuner train /path/to/POLAR_7B_full_varlenattn_custom_dataset.py --deepspeed deepspeed_zero2
         | 
| 239 | 
            +
             | 
| 240 | 
            +
              # On multiple GPUs
         | 
| 241 | 
            +
              NPROC_PER_NODE=${GPU_NUM} xtuner train /path/to/POLAR_7B_full_varlenattn_custom_dataset.py --deepspeed deepspeed_zero2
         | 
| 242 | 
            +
              ```
         | 
| 243 | 
            +
             | 
| 244 | 
            +
              这里,`--deepspeed` 表示使用 [DeepSpeed](https://github.com/microsoft/DeepSpeed) 来加速训练。xtuner 内置了多种 DeepSpeed 策略,包括 ZeRO-1、ZeRO-2 和 ZeRO-3。如果您想禁用此功能,只需移除此参数即可。
         | 
| 245 | 
            +
             | 
| 246 | 
            +
            - **第三步:** 将保存的 PTH 模型(若使用 DeepSpeed,则保存结果会是一个目录)转换为 HuggingFace 模型,命令如下:
         | 
| 247 | 
            +
             | 
| 248 | 
            +
              ```shell
         | 
| 249 | 
            +
              xtuner convert pth_to_hf ${CONFIG_FILE_PATH} ${PTH} ${SAVE_PATH}
         | 
| 250 | 
            +
              ```
         | 
| 251 | 
            +
            <br>
         | 
| 252 | 
            +
             | 
| 253 | 
            +
            # 效果示例
         | 
| 254 | 
            +
             | 
| 255 | 
            +
            ## 客观问答
         | 
| 256 | 
            +
             | 
| 257 | 
            +
            ```python
         | 
| 258 | 
            +
            from xtuner.utils import RewardModelClient
         | 
| 259 | 
            +
             | 
| 260 | 
            +
            prompt = "单词“strawberry”中有几个“r”?"
         | 
| 261 | 
            +
            reference = "单词“strawberry”中包含3个字母“r”。我们可以逐字母数一下:“s”、“t”、“r”、“a”、“w”、“b”、“e”、“r”、“r”、“y”。因此,答案是3。"
         | 
| 262 | 
            +
            outputs = [
         | 
| 263 | 
            +
                # 与参考完全一致
         | 
| 264 | 
            +
                "单词“strawberry”中包含3个字母“r”。我们可以逐字母数一下:“s”、“t”、“r”、“a”、“w”、“b”、“e”、“r”、“r”、“y”。因此,答案是3。",
         | 
| 265 | 
            +
                # 思路正确,答案正确
         | 
| 266 | 
            +
                "我们来数一数单词“strawberry”中有几个“r”:“s”、“t”、“r”、“a”、“w”、“b”、“e”、“r��、“r”、“y”。这里一共有三个“r”,因此答案是三。",
         | 
| 267 | 
            +
                # 思路错误,答案错误
         | 
| 268 | 
            +
                "我们来数一数单词“strawberry”中有几个“r”:“s”、“t”、“r”、“a”、“w”、“b”、“e”、“r”、“r”、“y”。这里一共有两个“r”,因此答案是二。",
         | 
| 269 | 
            +
                # 思路错误,答案正确
         | 
| 270 | 
            +
                "我们来数一数单词“strawberry”中有几个“r”:“s”、“t”、“r”、“a”、“w”、“b”、“e”、“r”、“r”、“y”。这里一共有两个“r”,因此答案是三。",
         | 
| 271 | 
            +
                # 思路正确,答案错误
         | 
| 272 | 
            +
                "我们来数一数单词“strawberry”中有几个“r”:“s”、“t”、“r”、“a”、“w”、“b”、“e”、“r”、“r”、“y”。这里一共有三个“r”,因此答案是二。",
         | 
| 273 | 
            +
                # 答案正确
         | 
| 274 | 
            +
                "单词“strawberry”中有3个“r”",
         | 
| 275 | 
            +
                # 答案错误
         | 
| 276 | 
            +
                "单词“strawberry”中有2个“r”"
         | 
| 277 | 
            +
            ]
         | 
| 278 | 
            +
            data = [{"prompt": prompt, "reference": reference, "output": output} for output in outputs]
         | 
| 279 | 
            +
             | 
| 280 | 
            +
            client = RewardModelClient("internlm/POLAR-7B", server_type="sglang", server_address="127.0.0.1:30000")
         | 
| 281 | 
            +
            rewards = client(data)
         | 
| 282 | 
            +
             | 
| 283 | 
            +
            sorted_res = sorted(zip(outputs, rewards), key=lambda x: x[1], reverse=True)
         | 
| 284 | 
            +
             | 
| 285 | 
            +
            for output, reward in sorted_res:
         | 
| 286 | 
            +
                print(f"Output: {output}\nReward: {reward}\n")
         | 
| 287 | 
            +
            ```
         | 
| 288 | 
            +
             | 
| 289 | 
            +
            ```txt
         | 
| 290 | 
            +
            Output: 单词“strawberry”中包含3个字母“r”。我们可以逐字母数一下:“s”、“t”、“r”、“a”、“w”、“b”、“e”、“r”、“r”、“y”。因此,答案是3。
         | 
| 291 | 
            +
            Reward: -1.5380859375
         | 
| 292 | 
            +
             | 
| 293 | 
            +
            Output: 我们来数一数单词“strawberry”中有几个“r”:“s”、“t”、“r”、“a”、“w”、“b”、“e”、“r”、“r”、“y”。这里一共有三个“r”,因此答案是三。
         | 
| 294 | 
            +
            Reward: -2.767578125
         | 
| 295 | 
            +
             | 
| 296 | 
            +
            Output: 单词“strawberry”中有3个“r”
         | 
| 297 | 
            +
            Reward: -7.45703125
         | 
| 298 | 
            +
             | 
| 299 | 
            +
            Output: 我们来数一数单词“strawberry”中有几个“r”:“s”、“t”、“r”、“a”、“w”、“b”、“e”、“r”、“r”、“y”。这里一共有三个“r”,因此答案是二。
         | 
| 300 | 
            +
            Reward: -7.6328125
         | 
| 301 | 
            +
             | 
| 302 | 
            +
            Output: 我们来数一数单词“strawberry”中有几个“r”:“s”、“t”、“r”、“a”、“w”、“b”、“e”、“r”、“r”、“y”。这里一共有两个“r”,因此答案是三。
         | 
| 303 | 
            +
            Reward: -8.65625
         | 
| 304 | 
            +
             | 
| 305 | 
            +
            Output: 我们来数一数单词“strawberry”中有几个“r”:“s”、“t”、“r”、“a”、“w”、“b”、“e”、“r”、“r”、“y”。这里一共有两个“r”,因此答案是二。
         | 
| 306 | 
            +
            Reward: -9.2890625
         | 
| 307 | 
            +
             | 
| 308 | 
            +
            Output: 单词“strawberry”中有2个“r”
         | 
| 309 | 
            +
            Reward: -11.921875
         | 
| 310 | 
            +
            ```
         | 
| 311 | 
            +
             | 
| 312 | 
            +
            ## 主观问答
         | 
| 313 | 
            +
            ```python
         | 
| 314 | 
            +
            from xtuner.utils import RewardModelClient
         | 
| 315 | 
            +
             | 
| 316 | 
            +
            prompt = "帮我想3个形容雨很大的成语,要求不能重复。"
         | 
| 317 | 
            +
            reference = "1. 倾盆大雨 2. 暴雨如注 3. 瓢泼大雨"
         | 
| 318 | 
            +
            outputs = [
         | 
| 319 | 
            +
                # 与参考相同
         | 
| 320 | 
            +
                "1. 倾盆大雨 2. 暴雨如注 3. 瓢泼大雨",
         | 
| 321 | 
            +
                # 正确回答
         | 
| 322 | 
            +
                "1. 大雨滂沱 2. 狂风骤雨 3. 大雨如注",
         | 
| 323 | 
            +
                # 非成语
         | 
| 324 | 
            +
                "1. 急雨如瀑 2. 豪雨倾天 3. 雨势磅礴",
         | 
| 325 | 
            +
                # 与参考类似,多一个。
         | 
| 326 | 
            +
                "1. 倾盆大雨 2. 暴雨如注 3. 瓢泼大雨 4. 大雨滂沱",
         | 
| 327 | 
            +
                # 与参考类似,重复一个。
         | 
| 328 | 
            +
                "1. 倾盆大雨 2. 暴雨如注 3. 暴雨如注",
         | 
| 329 | 
            +
                # 与参考类似,少一个。
         | 
| 330 | 
            +
                "1. 倾盆大雨 2. 暴雨如注",
         | 
| 331 | 
            +
                # 成语正确,多一个。
         | 
| 332 | 
            +
                "1. 大雨滂沱 2. 狂风骤雨 3. 大雨如注 4. 倾盆大雨", 
         | 
| 333 | 
            +
                # 成语正确,重复一个
         | 
| 334 | 
            +
                "1. 大雨滂沱 2. 狂风骤雨 3. 狂风骤雨",
         | 
| 335 | 
            +
                # 成语正确,少一个
         | 
| 336 | 
            +
                "1. 大雨滂沱 2. 狂风骤雨"
         | 
| 337 | 
            +
            ]
         | 
| 338 | 
            +
            data = [{"prompt": prompt, "reference": reference, "output": output} for output in outputs]
         | 
| 339 | 
            +
             | 
| 340 | 
            +
            client = RewardModelClient("internlm/POLAR-7B", server_type="sglang", server_address="127.0.0.1:30000")
         | 
| 341 | 
            +
            rewards = client(data)
         | 
| 342 | 
            +
             | 
| 343 | 
            +
            sorted_res = sorted(zip(outputs, rewards), key=lambda x: x[1], reverse=True)
         | 
| 344 | 
            +
             | 
| 345 | 
            +
            for output, reward in sorted_res:
         | 
| 346 | 
            +
                print(f"Output: {output}\nReward: {reward}\n")
         | 
| 347 | 
            +
            ```
         | 
| 348 | 
            +
             | 
| 349 | 
            +
            ```txt
         | 
| 350 | 
            +
            Output: 1. 倾盆大雨 2. 暴雨如注 3. 瓢泼大雨
         | 
| 351 | 
            +
            Reward: -1.42578125
         | 
| 352 | 
            +
             | 
| 353 | 
            +
            Output: 1. 大雨滂沱 2. 狂风骤雨 3. 大雨如注
         | 
| 354 | 
            +
            Reward: -5.234375
         | 
| 355 | 
            +
             | 
| 356 | 
            +
            Output: 1. 倾盆大雨 2. 暴雨如注 3. 瓢泼大雨 4. 大雨滂沱
         | 
| 357 | 
            +
            Reward: -5.62890625
         | 
| 358 | 
            +
             | 
| 359 | 
            +
            Output: 1. 急雨如瀑 2. 豪雨倾天 3. 雨势磅礴
         | 
| 360 | 
            +
            Reward: -5.7109375
         | 
| 361 | 
            +
             | 
| 362 | 
            +
            Output: 1. 倾盆大雨 2. 暴雨如注
         | 
| 363 | 
            +
            Reward: -6.61328125
         | 
| 364 | 
            +
             | 
| 365 | 
            +
            Output: 1. 倾盆大雨 2. 暴雨如注 3. 暴雨如注
         | 
| 366 | 
            +
            Reward: -6.65234375
         | 
| 367 | 
            +
             | 
| 368 | 
            +
            Output: 1. 大雨滂沱 2. 狂风骤雨
         | 
| 369 | 
            +
            Reward: -6.828125
         | 
| 370 | 
            +
             | 
| 371 | 
            +
            Output: 1. 大雨滂沱 2. 狂风骤雨 3. 大雨如注 4. 倾盆大雨
         | 
| 372 | 
            +
            Reward: -7.0234375
         | 
| 373 | 
            +
             | 
| 374 | 
            +
            Output: 1. 大雨滂沱 2. 狂风骤雨 3. 狂风骤雨
         | 
| 375 | 
            +
            Reward: -7.23046875
         | 
| 376 | 
            +
            ```
         | 
| 377 | 
            +
             | 
| 378 | 
            +
            # 许可证
         | 
| 379 | 
            +
             | 
| 380 | 
            +
            代码和模型权重均采用 Apache-2.0 许可证。
         | 
| 381 | 
            +
             | 
| 382 | 
            +
            # 引用
         | 
| 383 | 
            +
             | 
| 384 | 
            +
            ```
         | 
| 385 | 
            +
            TBC
         | 
| 386 | 
            +
            ```
         | 
    	
        config.json
    ADDED
    
    | @@ -0,0 +1,37 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "_name_or_path": "/cpfs01/shared/alillm_hs/zouyicheng/xtuner/model/internlm2_5-7b",
         | 
| 3 | 
            +
              "architectures": [
         | 
| 4 | 
            +
                "InternLM2ForRewardModel"
         | 
| 5 | 
            +
              ],
         | 
| 6 | 
            +
              "attn_implementation": "flash_attention_2",
         | 
| 7 | 
            +
              "auto_map": {
         | 
| 8 | 
            +
                "AutoConfig": "configuration_internlm2.InternLM2Config",
         | 
| 9 | 
            +
                "AutoModel": "modeling_internlm2.InternLM2ForRewardModel"
         | 
| 10 | 
            +
              },
         | 
| 11 | 
            +
              "bias": false,
         | 
| 12 | 
            +
              "bos_token_id": 1,
         | 
| 13 | 
            +
              "eos_token_id": 2,
         | 
| 14 | 
            +
              "hidden_act": "silu",
         | 
| 15 | 
            +
              "hidden_size": 4096,
         | 
| 16 | 
            +
              "initializer_range": 0.02,
         | 
| 17 | 
            +
              "intermediate_size": 14336,
         | 
| 18 | 
            +
              "max_position_embeddings": 262144,
         | 
| 19 | 
            +
              "model_type": "internlm2",
         | 
| 20 | 
            +
              "num_attention_heads": 32,
         | 
| 21 | 
            +
              "num_hidden_layers": 32,
         | 
| 22 | 
            +
              "num_key_value_heads": 8,
         | 
| 23 | 
            +
              "pad_token_id": 2,
         | 
| 24 | 
            +
              "pretraining_tp": 1,
         | 
| 25 | 
            +
              "reward_token_id": 92527,
         | 
| 26 | 
            +
              "rms_norm_eps": 1e-05,
         | 
| 27 | 
            +
              "rope_scaling": {
         | 
| 28 | 
            +
                "factor": 2.0,
         | 
| 29 | 
            +
                "type": "dynamic"
         | 
| 30 | 
            +
              },
         | 
| 31 | 
            +
              "rope_theta": 50000000,
         | 
| 32 | 
            +
              "tie_word_embeddings": false,
         | 
| 33 | 
            +
              "torch_dtype": "float16",
         | 
| 34 | 
            +
              "transformers_version": "4.49.0",
         | 
| 35 | 
            +
              "use_cache": true,
         | 
| 36 | 
            +
              "vocab_size": 92544
         | 
| 37 | 
            +
            }
         | 
    	
        configuration_internlm2.py
    ADDED
    
    | @@ -0,0 +1,180 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # coding=utf-8
         | 
| 2 | 
            +
            # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
         | 
| 3 | 
            +
            #
         | 
| 4 | 
            +
            # This code is based on transformers/src/transformers/models/llama/configuration_llama.py
         | 
| 5 | 
            +
            #
         | 
| 6 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 7 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 8 | 
            +
            # You may obtain a copy of the License at
         | 
| 9 | 
            +
            #
         | 
| 10 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 11 | 
            +
            #
         | 
| 12 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 13 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 14 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 15 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 16 | 
            +
            # limitations under the License.
         | 
| 17 | 
            +
            """ InternLM2 model configuration"""
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            from transformers.configuration_utils import PretrainedConfig
         | 
| 20 | 
            +
            from transformers.utils import logging
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 23 | 
            +
             | 
| 24 | 
            +
            INTERNLM2_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
         | 
| 25 | 
            +
             | 
| 26 | 
            +
             | 
| 27 | 
            +
            # Modified from transformers.model.llama.configuration_llama.LlamaConfig
         | 
| 28 | 
            +
            class InternLM2Config(PretrainedConfig):
         | 
| 29 | 
            +
                r"""
         | 
| 30 | 
            +
                This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
         | 
| 31 | 
            +
                an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
         | 
| 32 | 
            +
                configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
         | 
| 33 | 
            +
             | 
| 34 | 
            +
                Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
         | 
| 35 | 
            +
                documentation from [`PretrainedConfig`] for more information.
         | 
| 36 | 
            +
             | 
| 37 | 
            +
             | 
| 38 | 
            +
                Args:
         | 
| 39 | 
            +
                    vocab_size (`int`, *optional*, defaults to 32000):
         | 
| 40 | 
            +
                        Vocabulary size of the InternLM2 model. Defines the number of different tokens that can be represented by the
         | 
| 41 | 
            +
                        `inputs_ids` passed when calling [`InternLM2Model`]
         | 
| 42 | 
            +
                    hidden_size (`int`, *optional*, defaults to 4096):
         | 
| 43 | 
            +
                        Dimension of the hidden representations.
         | 
| 44 | 
            +
                    intermediate_size (`int`, *optional*, defaults to 11008):
         | 
| 45 | 
            +
                        Dimension of the MLP representations.
         | 
| 46 | 
            +
                    num_hidden_layers (`int`, *optional*, defaults to 32):
         | 
| 47 | 
            +
                        Number of hidden layers in the Transformer decoder.
         | 
| 48 | 
            +
                    num_attention_heads (`int`, *optional*, defaults to 32):
         | 
| 49 | 
            +
                        Number of attention heads for each attention layer in the Transformer decoder.
         | 
| 50 | 
            +
                    num_key_value_heads (`int`, *optional*):
         | 
| 51 | 
            +
                        This is the number of key_value heads that should be used to implement Grouped Query Attention. If
         | 
| 52 | 
            +
                        `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
         | 
| 53 | 
            +
                        `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
         | 
| 54 | 
            +
                        converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
         | 
| 55 | 
            +
                        by meanpooling all the original heads within that group. For more details checkout [this
         | 
| 56 | 
            +
                        paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
         | 
| 57 | 
            +
                        `num_attention_heads`.
         | 
| 58 | 
            +
                    hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
         | 
| 59 | 
            +
                        The non-linear activation function (function or string) in the decoder.
         | 
| 60 | 
            +
                    max_position_embeddings (`int`, *optional*, defaults to 2048):
         | 
| 61 | 
            +
                        The maximum sequence length that this model might ever be used with. InternLM2 supports up to 32768 tokens.
         | 
| 62 | 
            +
                    initializer_range (`float`, *optional*, defaults to 0.02):
         | 
| 63 | 
            +
                        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
         | 
| 64 | 
            +
                    rms_norm_eps (`float`, *optional*, defaults to 1e-06):
         | 
| 65 | 
            +
                        The epsilon used by the rms normalization layers.
         | 
| 66 | 
            +
                    use_cache (`bool`, *optional*, defaults to `True`):
         | 
| 67 | 
            +
                        Whether or not the model should return the last key/values attentions (not used by all models). Only
         | 
| 68 | 
            +
                        relevant if `config.is_decoder=True`.
         | 
| 69 | 
            +
                    pad_token_id (`int`, *optional*):
         | 
| 70 | 
            +
                        Padding token id.
         | 
| 71 | 
            +
                    bos_token_id (`int`, *optional*, defaults to 1):
         | 
| 72 | 
            +
                        Beginning of stream token id.
         | 
| 73 | 
            +
                    eos_token_id (`int`, *optional*, defaults to 2):
         | 
| 74 | 
            +
                        End of stream token id.
         | 
| 75 | 
            +
                    pretraining_tp (`int`, *optional*, defaults to 1):
         | 
| 76 | 
            +
                        Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
         | 
| 77 | 
            +
                        document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism)
         | 
| 78 | 
            +
                        to understand more about it. This value is necessary to ensure exact reproducibility
         | 
| 79 | 
            +
                        of the pretraining results. Please refer to [this
         | 
| 80 | 
            +
                        issue](https://github.com/pytorch/pytorch/issues/76232).
         | 
| 81 | 
            +
                    tie_word_embeddings (`bool`, *optional*, defaults to `False`):
         | 
| 82 | 
            +
                        Whether to tie weight embeddings
         | 
| 83 | 
            +
                    rope_theta (`float`, *optional*, defaults to 10000.0):
         | 
| 84 | 
            +
                        The base period of the RoPE embeddings.
         | 
| 85 | 
            +
                    rope_scaling (`Dict`, *optional*):
         | 
| 86 | 
            +
                        Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
         | 
| 87 | 
            +
                        strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
         | 
| 88 | 
            +
                        `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
         | 
| 89 | 
            +
                        `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
         | 
| 90 | 
            +
                        these scaling strategies behave:
         | 
| 91 | 
            +
                        https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
         | 
| 92 | 
            +
                        experimental feature, subject to breaking API changes in future versions.
         | 
| 93 | 
            +
                """
         | 
| 94 | 
            +
                _auto_class = "AutoConfig"
         | 
| 95 | 
            +
                model_type = "internlm2"
         | 
| 96 | 
            +
                keys_to_ignore_at_inference = ["past_key_values"]
         | 
| 97 | 
            +
             | 
| 98 | 
            +
                def __init__(  # pylint: disable=W0102
         | 
| 99 | 
            +
                    self,
         | 
| 100 | 
            +
                    vocab_size=103168,
         | 
| 101 | 
            +
                    hidden_size=4096,
         | 
| 102 | 
            +
                    intermediate_size=11008,
         | 
| 103 | 
            +
                    num_hidden_layers=32,
         | 
| 104 | 
            +
                    num_attention_heads=32,
         | 
| 105 | 
            +
                    num_key_value_heads=None,
         | 
| 106 | 
            +
                    hidden_act="silu",
         | 
| 107 | 
            +
                    max_position_embeddings=2048,
         | 
| 108 | 
            +
                    initializer_range=0.02,
         | 
| 109 | 
            +
                    rms_norm_eps=1e-6,
         | 
| 110 | 
            +
                    use_cache=True,
         | 
| 111 | 
            +
                    pad_token_id=0,
         | 
| 112 | 
            +
                    bos_token_id=1,
         | 
| 113 | 
            +
                    eos_token_id=2,
         | 
| 114 | 
            +
                    pretraining_tp=1,
         | 
| 115 | 
            +
                    tie_word_embeddings=False,
         | 
| 116 | 
            +
                    bias=True,
         | 
| 117 | 
            +
                    rope_theta=10000,
         | 
| 118 | 
            +
                    rope_scaling=None,
         | 
| 119 | 
            +
                    attn_implementation=None,
         | 
| 120 | 
            +
                    **kwargs,
         | 
| 121 | 
            +
                ):
         | 
| 122 | 
            +
                    self.vocab_size = vocab_size
         | 
| 123 | 
            +
                    self.max_position_embeddings = max_position_embeddings
         | 
| 124 | 
            +
                    self.hidden_size = hidden_size
         | 
| 125 | 
            +
                    self.intermediate_size = intermediate_size
         | 
| 126 | 
            +
                    self.num_hidden_layers = num_hidden_layers
         | 
| 127 | 
            +
                    self.num_attention_heads = num_attention_heads
         | 
| 128 | 
            +
                    self.bias = bias
         | 
| 129 | 
            +
             | 
| 130 | 
            +
                    if num_key_value_heads is None:
         | 
| 131 | 
            +
                        num_key_value_heads = num_attention_heads
         | 
| 132 | 
            +
                    self.num_key_value_heads = num_key_value_heads
         | 
| 133 | 
            +
             | 
| 134 | 
            +
                    self.hidden_act = hidden_act
         | 
| 135 | 
            +
                    self.initializer_range = initializer_range
         | 
| 136 | 
            +
                    self.rms_norm_eps = rms_norm_eps
         | 
| 137 | 
            +
                    self.pretraining_tp = pretraining_tp
         | 
| 138 | 
            +
                    self.use_cache = use_cache
         | 
| 139 | 
            +
                    self.rope_theta = rope_theta
         | 
| 140 | 
            +
                    self.rope_scaling = rope_scaling
         | 
| 141 | 
            +
                    self._rope_scaling_validation()
         | 
| 142 | 
            +
                    self.attn_implementation = attn_implementation
         | 
| 143 | 
            +
                    if self.attn_implementation is None:
         | 
| 144 | 
            +
                        self.attn_implementation = "eager"
         | 
| 145 | 
            +
             | 
| 146 | 
            +
                    super().__init__(
         | 
| 147 | 
            +
                        pad_token_id=pad_token_id,
         | 
| 148 | 
            +
                        bos_token_id=bos_token_id,
         | 
| 149 | 
            +
                        eos_token_id=eos_token_id,
         | 
| 150 | 
            +
                        tie_word_embeddings=tie_word_embeddings,
         | 
| 151 | 
            +
                        **kwargs,
         | 
| 152 | 
            +
                    )
         | 
| 153 | 
            +
             | 
| 154 | 
            +
                def _rope_scaling_validation(self):
         | 
| 155 | 
            +
                    """
         | 
| 156 | 
            +
                    Validate the `rope_scaling` configuration.
         | 
| 157 | 
            +
                    """
         | 
| 158 | 
            +
                    if self.rope_scaling is None:
         | 
| 159 | 
            +
                        return
         | 
| 160 | 
            +
             | 
| 161 | 
            +
                    if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
         | 
| 162 | 
            +
                        raise ValueError(
         | 
| 163 | 
            +
                            "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
         | 
| 164 | 
            +
                            f"got {self.rope_scaling}"
         | 
| 165 | 
            +
                        )
         | 
| 166 | 
            +
                    rope_scaling_type = self.rope_scaling.get("type", None)
         | 
| 167 | 
            +
                    rope_scaling_factor = self.rope_scaling.get("factor", None)
         | 
| 168 | 
            +
                    if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
         | 
| 169 | 
            +
                        raise ValueError(
         | 
| 170 | 
            +
                            f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
         | 
| 171 | 
            +
                        )
         | 
| 172 | 
            +
                    if (
         | 
| 173 | 
            +
                        rope_scaling_factor is None
         | 
| 174 | 
            +
                        or not isinstance(rope_scaling_factor, (float, int))
         | 
| 175 | 
            +
                        or rope_scaling_factor < 1.0
         | 
| 176 | 
            +
                    ):
         | 
| 177 | 
            +
                        raise ValueError(
         | 
| 178 | 
            +
                            f"`rope_scaling`'s factor field must be a number >= 1, got {rope_scaling_factor} "
         | 
| 179 | 
            +
                            f"of type {type(rope_scaling_factor)}"
         | 
| 180 | 
            +
                        )
         | 
    	
        misc/intro.jpeg
    ADDED
    
    |   | 
| Git LFS Details
 | 
    	
        misc/logo.png
    ADDED
    
    |   | 
    	
        misc/result.png
    ADDED
    
    |   | 
| Git LFS Details
 | 
    	
        modeling_internlm2.py
    ADDED
    
    | @@ -0,0 +1,1995 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
         | 
| 2 | 
            +
            #
         | 
| 3 | 
            +
            # This code is based on transformers/src/transformers/models/llama/modeling_llama.py
         | 
| 4 | 
            +
            #
         | 
| 5 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 6 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 7 | 
            +
            # You may obtain a copy of the License at
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 10 | 
            +
            #
         | 
| 11 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 12 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 13 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 14 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 15 | 
            +
            # limitations under the License.
         | 
| 16 | 
            +
            """PyTorch InternLM2 model."""
         | 
| 17 | 
            +
            import math
         | 
| 18 | 
            +
            import queue
         | 
| 19 | 
            +
            import threading
         | 
| 20 | 
            +
            from typing import List, Optional, Tuple, Union
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            import torch
         | 
| 23 | 
            +
            import torch.nn.functional as F
         | 
| 24 | 
            +
            import torch.utils.checkpoint
         | 
| 25 | 
            +
            from einops import rearrange
         | 
| 26 | 
            +
            from torch import nn
         | 
| 27 | 
            +
            from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
         | 
| 28 | 
            +
            from transformers.activations import ACT2FN
         | 
| 29 | 
            +
            from transformers.cache_utils import Cache, DynamicCache, StaticCache
         | 
| 30 | 
            +
            from transformers.modeling_attn_mask_utils import AttentionMaskConverter
         | 
| 31 | 
            +
            from transformers.modeling_outputs import (
         | 
| 32 | 
            +
                BaseModelOutputWithPast,
         | 
| 33 | 
            +
                CausalLMOutputWithPast,
         | 
| 34 | 
            +
                QuestionAnsweringModelOutput,
         | 
| 35 | 
            +
                SequenceClassifierOutputWithPast,
         | 
| 36 | 
            +
                TokenClassifierOutput,
         | 
| 37 | 
            +
            )
         | 
| 38 | 
            +
            from transformers.modeling_utils import PreTrainedModel
         | 
| 39 | 
            +
            from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
         | 
| 40 | 
            +
            from transformers.utils import (
         | 
| 41 | 
            +
                add_start_docstrings,
         | 
| 42 | 
            +
                add_start_docstrings_to_model_forward,
         | 
| 43 | 
            +
                is_flash_attn_greater_or_equal_2_10,
         | 
| 44 | 
            +
                logging,
         | 
| 45 | 
            +
                replace_return_docstrings,
         | 
| 46 | 
            +
            )
         | 
| 47 | 
            +
             | 
| 48 | 
            +
            try:
         | 
| 49 | 
            +
                from transformers.generation.streamers import BaseStreamer
         | 
| 50 | 
            +
            except Exception:
         | 
| 51 | 
            +
                BaseStreamer = None
         | 
| 52 | 
            +
             | 
| 53 | 
            +
            from .configuration_internlm2 import InternLM2Config
         | 
| 54 | 
            +
             | 
| 55 | 
            +
             | 
| 56 | 
            +
            try:
         | 
| 57 | 
            +
                from flash_attn import flash_attn_func, flash_attn_varlen_func
         | 
| 58 | 
            +
                from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input
         | 
| 59 | 
            +
            except:
         | 
| 60 | 
            +
                pass
         | 
| 61 | 
            +
             | 
| 62 | 
            +
             | 
| 63 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 64 | 
            +
             | 
| 65 | 
            +
            _CONFIG_FOR_DOC = "InternLM2Config"
         | 
| 66 | 
            +
             | 
| 67 | 
            +
             | 
| 68 | 
            +
            def _get_unpad_data(attention_mask):
         | 
| 69 | 
            +
                seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
         | 
| 70 | 
            +
                indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
         | 
| 71 | 
            +
                max_seqlen_in_batch = seqlens_in_batch.max().item()
         | 
| 72 | 
            +
                cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))  # pylint: disable=E1102
         | 
| 73 | 
            +
                return (
         | 
| 74 | 
            +
                    indices,
         | 
| 75 | 
            +
                    cu_seqlens,
         | 
| 76 | 
            +
                    max_seqlen_in_batch,
         | 
| 77 | 
            +
                )
         | 
| 78 | 
            +
             | 
| 79 | 
            +
             | 
| 80 | 
            +
            class InternLM2RMSNorm(nn.Module):
         | 
| 81 | 
            +
                """InternLM2RMSNorm is equivalent to T5LayerNorm."""
         | 
| 82 | 
            +
             | 
| 83 | 
            +
                def __init__(self, hidden_size, eps=1e-6):
         | 
| 84 | 
            +
                    super().__init__()
         | 
| 85 | 
            +
                    self.weight = nn.Parameter(torch.ones(hidden_size))
         | 
| 86 | 
            +
                    self.variance_epsilon = eps
         | 
| 87 | 
            +
             | 
| 88 | 
            +
                def forward(self, hidden_states):
         | 
| 89 | 
            +
                    input_dtype = hidden_states.dtype
         | 
| 90 | 
            +
                    hidden_states = hidden_states.to(torch.float32)
         | 
| 91 | 
            +
                    variance = hidden_states.pow(2).mean(-1, keepdim=True)
         | 
| 92 | 
            +
                    hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
         | 
| 93 | 
            +
                    return self.weight * hidden_states.to(input_dtype)
         | 
| 94 | 
            +
             | 
| 95 | 
            +
             | 
| 96 | 
            +
            ALL_LAYERNORM_LAYERS.append(InternLM2RMSNorm)
         | 
| 97 | 
            +
             | 
| 98 | 
            +
             | 
| 99 | 
            +
            class InternLM2RotaryEmbedding(nn.Module):
         | 
| 100 | 
            +
                """Rotary Position Embedding for the InternLM2 model. Credits to the Reddit user /u/lucidrains."""
         | 
| 101 | 
            +
             | 
| 102 | 
            +
                def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
         | 
| 103 | 
            +
                    super().__init__()
         | 
| 104 | 
            +
                    self.scaling_factor = scaling_factor
         | 
| 105 | 
            +
                    self.dim = dim
         | 
| 106 | 
            +
                    self.max_position_embeddings = max_position_embeddings
         | 
| 107 | 
            +
                    self.base = base
         | 
| 108 | 
            +
                    inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
         | 
| 109 | 
            +
                    self.register_buffer("inv_freq", inv_freq, persistent=False)
         | 
| 110 | 
            +
                    # For BC we register cos and sin cached
         | 
| 111 | 
            +
                    self.max_seq_len_cached = max_position_embeddings
         | 
| 112 | 
            +
             | 
| 113 | 
            +
                @torch.no_grad()
         | 
| 114 | 
            +
                def forward(self, x, position_ids):
         | 
| 115 | 
            +
                    # x: [bs, num_attention_heads, seq_len, head_size]
         | 
| 116 | 
            +
                    inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
         | 
| 117 | 
            +
                    position_ids_expanded = position_ids[:, None, :].float()
         | 
| 118 | 
            +
                    # Force float32 since bfloat16 loses precision on long contexts
         | 
| 119 | 
            +
                    # See https://github.com/huggingface/transformers/pull/29285
         | 
| 120 | 
            +
                    device_type = x.device.type
         | 
| 121 | 
            +
                    device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
         | 
| 122 | 
            +
                    with torch.autocast(device_type=device_type, enabled=False):
         | 
| 123 | 
            +
                        freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
         | 
| 124 | 
            +
                        emb = torch.cat((freqs, freqs), dim=-1)
         | 
| 125 | 
            +
                        cos = emb.cos()
         | 
| 126 | 
            +
                        sin = emb.sin()
         | 
| 127 | 
            +
                    return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
         | 
| 128 | 
            +
             | 
| 129 | 
            +
             | 
| 130 | 
            +
            class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
         | 
| 131 | 
            +
                """InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
         | 
| 132 | 
            +
             | 
| 133 | 
            +
                def forward(self, x, position_ids):
         | 
| 134 | 
            +
                    # difference to the original RoPE: a scaling factor is aplied to the position ids
         | 
| 135 | 
            +
                    position_ids = position_ids.float() / self.scaling_factor
         | 
| 136 | 
            +
                    cos, sin = super().forward(x, position_ids)
         | 
| 137 | 
            +
                    return cos, sin
         | 
| 138 | 
            +
             | 
| 139 | 
            +
             | 
| 140 | 
            +
            class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
         | 
| 141 | 
            +
                """InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
         | 
| 142 | 
            +
                Credits to the Reddit users /u/bloc97 and /u/emozilla"""
         | 
| 143 | 
            +
             | 
| 144 | 
            +
                def forward(self, x, position_ids):
         | 
| 145 | 
            +
                    # difference to the original RoPE: inv_freq is recomputed when the sequence length > original length
         | 
| 146 | 
            +
                    seq_len = torch.max(position_ids) + 1
         | 
| 147 | 
            +
                    if seq_len > self.max_position_embeddings:
         | 
| 148 | 
            +
                        base = self.base * (
         | 
| 149 | 
            +
                            (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
         | 
| 150 | 
            +
                        ) ** (self.dim / (self.dim - 2))
         | 
| 151 | 
            +
                        inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(x.device) / self.dim))
         | 
| 152 | 
            +
                        self.register_buffer("inv_freq", inv_freq, persistent=False)  # TODO joao: this may break with compilation
         | 
| 153 | 
            +
             | 
| 154 | 
            +
                    cos, sin = super().forward(x, position_ids)
         | 
| 155 | 
            +
                    return cos, sin
         | 
| 156 | 
            +
             | 
| 157 | 
            +
             | 
| 158 | 
            +
            def rotate_half(x):
         | 
| 159 | 
            +
                """Rotates half the hidden dims of the input."""
         | 
| 160 | 
            +
                x1 = x[..., : x.shape[-1] // 2]
         | 
| 161 | 
            +
                x2 = x[..., x.shape[-1] // 2 :]
         | 
| 162 | 
            +
                return torch.cat((-x2, x1), dim=-1)
         | 
| 163 | 
            +
             | 
| 164 | 
            +
             | 
| 165 | 
            +
            def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):  # pylint: disable=unused-argument
         | 
| 166 | 
            +
                """Applies Rotary Position Embedding to the query and key tensors.
         | 
| 167 | 
            +
                Args:
         | 
| 168 | 
            +
                    q (`torch.Tensor`): The query tensor.
         | 
| 169 | 
            +
                    k (`torch.Tensor`): The key tensor.
         | 
| 170 | 
            +
                    cos (`torch.Tensor`): The cosine part of the rotary embedding.
         | 
| 171 | 
            +
                    sin (`torch.Tensor`): The sine part of the rotary embedding.
         | 
| 172 | 
            +
                    position_ids (`torch.Tensor`, *optional*):
         | 
| 173 | 
            +
                        Deprecated and unused.
         | 
| 174 | 
            +
                    unsqueeze_dim (`int`, *optional*, defaults to 1):
         | 
| 175 | 
            +
                        The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
         | 
| 176 | 
            +
                        sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
         | 
| 177 | 
            +
                        that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
         | 
| 178 | 
            +
                        k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
         | 
| 179 | 
            +
                        cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
         | 
| 180 | 
            +
                        the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
         | 
| 181 | 
            +
                Returns:
         | 
| 182 | 
            +
                    `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
         | 
| 183 | 
            +
                """
         | 
| 184 | 
            +
                cos = cos.unsqueeze(unsqueeze_dim)
         | 
| 185 | 
            +
                sin = sin.unsqueeze(unsqueeze_dim)
         | 
| 186 | 
            +
                q_embed = (q * cos) + (rotate_half(q) * sin)
         | 
| 187 | 
            +
                k_embed = (k * cos) + (rotate_half(k) * sin)
         | 
| 188 | 
            +
                return q_embed, k_embed
         | 
| 189 | 
            +
             | 
| 190 | 
            +
             | 
| 191 | 
            +
            class InternLM2MLP(nn.Module):
         | 
| 192 | 
            +
                """MLP for InternLM2 model."""
         | 
| 193 | 
            +
             | 
| 194 | 
            +
                def __init__(self, config):
         | 
| 195 | 
            +
                    super().__init__()
         | 
| 196 | 
            +
                    self.config = config
         | 
| 197 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 198 | 
            +
                    self.intermediate_size = config.intermediate_size
         | 
| 199 | 
            +
                    self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
         | 
| 200 | 
            +
                    self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
         | 
| 201 | 
            +
                    self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
         | 
| 202 | 
            +
                    self.act_fn = ACT2FN[config.hidden_act]
         | 
| 203 | 
            +
             | 
| 204 | 
            +
                def forward(self, x):
         | 
| 205 | 
            +
                    down_proj = self.w2(self.act_fn(self.w1(x)) * self.w3(x))
         | 
| 206 | 
            +
             | 
| 207 | 
            +
                    return down_proj
         | 
| 208 | 
            +
             | 
| 209 | 
            +
             | 
| 210 | 
            +
            def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
         | 
| 211 | 
            +
                """
         | 
| 212 | 
            +
                This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
         | 
| 213 | 
            +
                num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
         | 
| 214 | 
            +
                """
         | 
| 215 | 
            +
                batch, num_key_value_heads, slen, head_dim = hidden_states.shape
         | 
| 216 | 
            +
                if n_rep == 1:
         | 
| 217 | 
            +
                    return hidden_states
         | 
| 218 | 
            +
                hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
         | 
| 219 | 
            +
                return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
         | 
| 220 | 
            +
             | 
| 221 | 
            +
             | 
| 222 | 
            +
            class InternLM2Attention(nn.Module):
         | 
| 223 | 
            +
                """Multi-headed attention from 'Attention Is All You Need' paper"""
         | 
| 224 | 
            +
             | 
| 225 | 
            +
                def __init__(self, config: InternLM2Config, layer_idx: Optional[int] = None):
         | 
| 226 | 
            +
                    super().__init__()
         | 
| 227 | 
            +
                    self.config = config
         | 
| 228 | 
            +
                    self.layer_idx = layer_idx
         | 
| 229 | 
            +
                    if layer_idx is None:
         | 
| 230 | 
            +
                        logger.warning_once(
         | 
| 231 | 
            +
                            f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
         | 
| 232 | 
            +
                            "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
         | 
| 233 | 
            +
                            "when creating this class."
         | 
| 234 | 
            +
                        )
         | 
| 235 | 
            +
             | 
| 236 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 237 | 
            +
                    self.num_heads = config.num_attention_heads
         | 
| 238 | 
            +
                    self.head_dim = self.hidden_size // self.num_heads
         | 
| 239 | 
            +
                    self.num_key_value_heads = config.num_key_value_heads
         | 
| 240 | 
            +
                    self.num_key_value_groups = self.num_heads // self.num_key_value_heads
         | 
| 241 | 
            +
                    self.max_position_embeddings = config.max_position_embeddings
         | 
| 242 | 
            +
                    self.rope_theta = config.rope_theta
         | 
| 243 | 
            +
                    self.is_causal = True
         | 
| 244 | 
            +
             | 
| 245 | 
            +
                    if (self.head_dim * self.num_heads) != self.hidden_size:
         | 
| 246 | 
            +
                        raise ValueError(
         | 
| 247 | 
            +
                            f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
         | 
| 248 | 
            +
                            f" and `num_heads`: {self.num_heads})."
         | 
| 249 | 
            +
                        )
         | 
| 250 | 
            +
             | 
| 251 | 
            +
                    self.wqkv = nn.Linear(
         | 
| 252 | 
            +
                        self.hidden_size,
         | 
| 253 | 
            +
                        (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
         | 
| 254 | 
            +
                        bias=config.bias,
         | 
| 255 | 
            +
                    )
         | 
| 256 | 
            +
                    self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
         | 
| 257 | 
            +
             | 
| 258 | 
            +
                    self._init_rope()
         | 
| 259 | 
            +
             | 
| 260 | 
            +
                def _init_rope(self):
         | 
| 261 | 
            +
                    if self.config.rope_scaling is None:
         | 
| 262 | 
            +
                        self.rotary_emb = InternLM2RotaryEmbedding(
         | 
| 263 | 
            +
                            self.head_dim,
         | 
| 264 | 
            +
                            max_position_embeddings=self.max_position_embeddings,
         | 
| 265 | 
            +
                            base=self.rope_theta,
         | 
| 266 | 
            +
                        )
         | 
| 267 | 
            +
                    else:
         | 
| 268 | 
            +
                        scaling_type = self.config.rope_scaling["type"]
         | 
| 269 | 
            +
                        scaling_factor = self.config.rope_scaling["factor"]
         | 
| 270 | 
            +
                        if scaling_type == "linear":
         | 
| 271 | 
            +
                            self.rotary_emb = InternLM2LinearScalingRotaryEmbedding(
         | 
| 272 | 
            +
                                self.head_dim,
         | 
| 273 | 
            +
                                max_position_embeddings=self.max_position_embeddings,
         | 
| 274 | 
            +
                                scaling_factor=scaling_factor,
         | 
| 275 | 
            +
                                base=self.rope_theta,
         | 
| 276 | 
            +
                            )
         | 
| 277 | 
            +
                        elif scaling_type == "dynamic":
         | 
| 278 | 
            +
                            self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
         | 
| 279 | 
            +
                                self.head_dim,
         | 
| 280 | 
            +
                                max_position_embeddings=self.max_position_embeddings,
         | 
| 281 | 
            +
                                scaling_factor=scaling_factor,
         | 
| 282 | 
            +
                                base=self.rope_theta,
         | 
| 283 | 
            +
                            )
         | 
| 284 | 
            +
                        else:
         | 
| 285 | 
            +
                            raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
         | 
| 286 | 
            +
             | 
| 287 | 
            +
                def forward(
         | 
| 288 | 
            +
                    self,
         | 
| 289 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 290 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 291 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 292 | 
            +
                    past_key_value: Optional[Cache] = None,
         | 
| 293 | 
            +
                    output_attentions: bool = False,
         | 
| 294 | 
            +
                    use_cache: bool = False,  # pylint: disable=unused-argument
         | 
| 295 | 
            +
                    cache_position: Optional[torch.LongTensor] = None,
         | 
| 296 | 
            +
                ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
         | 
| 297 | 
            +
                    bsz, q_len, _ = hidden_states.size()
         | 
| 298 | 
            +
             | 
| 299 | 
            +
                    if self.config.pretraining_tp > 1:
         | 
| 300 | 
            +
                        # split qkv_states by tp size
         | 
| 301 | 
            +
                        key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
         | 
| 302 | 
            +
                        qkv_slices = self.wqkv.weight.split(key_value_slicing, dim=0)
         | 
| 303 | 
            +
                        qkv_states = torch.cat(
         | 
| 304 | 
            +
                            [F.linear(hidden_states, qkv_slice) for qkv_slice in qkv_slices], dim=-1  # pylint: disable=E1102
         | 
| 305 | 
            +
                        )
         | 
| 306 | 
            +
                    else:
         | 
| 307 | 
            +
                        qkv_states = self.wqkv(hidden_states)
         | 
| 308 | 
            +
             | 
| 309 | 
            +
                    qkv_states = rearrange(
         | 
| 310 | 
            +
                        qkv_states,
         | 
| 311 | 
            +
                        "b q (h gs d) -> b q h gs d",
         | 
| 312 | 
            +
                        gs=2 + self.num_key_value_groups,
         | 
| 313 | 
            +
                        d=self.head_dim,
         | 
| 314 | 
            +
                    )
         | 
| 315 | 
            +
             | 
| 316 | 
            +
                    query_states = qkv_states[..., : self.num_key_value_groups, :]
         | 
| 317 | 
            +
                    query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d").transpose(1, 2)
         | 
| 318 | 
            +
                    key_states = qkv_states[..., -2, :].transpose(1, 2)
         | 
| 319 | 
            +
                    value_states = qkv_states[..., -1, :].transpose(1, 2)
         | 
| 320 | 
            +
             | 
| 321 | 
            +
                    cos, sin = self.rotary_emb(value_states, position_ids)
         | 
| 322 | 
            +
                    query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
         | 
| 323 | 
            +
             | 
| 324 | 
            +
                    if past_key_value is not None:
         | 
| 325 | 
            +
                        # sin and cos are specific to RoPE models; cache_position needed for the static cache
         | 
| 326 | 
            +
                        cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
         | 
| 327 | 
            +
                        key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
         | 
| 328 | 
            +
             | 
| 329 | 
            +
                    key_states = repeat_kv(key_states, self.num_key_value_groups)
         | 
| 330 | 
            +
                    value_states = repeat_kv(value_states, self.num_key_value_groups)
         | 
| 331 | 
            +
             | 
| 332 | 
            +
                    attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
         | 
| 333 | 
            +
             | 
| 334 | 
            +
                    if attention_mask is not None:  # no matter the length, we just slice it
         | 
| 335 | 
            +
                        causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
         | 
| 336 | 
            +
                        attn_weights = attn_weights + causal_mask
         | 
| 337 | 
            +
             | 
| 338 | 
            +
                    # upcast attention to fp32
         | 
| 339 | 
            +
                    attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
         | 
| 340 | 
            +
                    attn_output = torch.matmul(attn_weights, value_states)
         | 
| 341 | 
            +
             | 
| 342 | 
            +
                    if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
         | 
| 343 | 
            +
                        raise ValueError(
         | 
| 344 | 
            +
                            f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
         | 
| 345 | 
            +
                            f" {attn_output.size()}"
         | 
| 346 | 
            +
                        )
         | 
| 347 | 
            +
             | 
| 348 | 
            +
                    attn_output = attn_output.transpose(1, 2).contiguous()
         | 
| 349 | 
            +
             | 
| 350 | 
            +
                    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
         | 
| 351 | 
            +
             | 
| 352 | 
            +
                    if self.config.pretraining_tp > 1:
         | 
| 353 | 
            +
                        attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
         | 
| 354 | 
            +
                        o_proj_slices = self.wo.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
         | 
| 355 | 
            +
                        attn_output = sum(
         | 
| 356 | 
            +
                            [
         | 
| 357 | 
            +
                                F.linear(attn_output[i], o_proj_slices[i])  # pylint: disable=E1102
         | 
| 358 | 
            +
                                for i in range(self.config.pretraining_tp)
         | 
| 359 | 
            +
                            ]
         | 
| 360 | 
            +
                        )
         | 
| 361 | 
            +
                    else:
         | 
| 362 | 
            +
                        attn_output = self.wo(attn_output)
         | 
| 363 | 
            +
             | 
| 364 | 
            +
                    if not output_attentions:
         | 
| 365 | 
            +
                        attn_weights = None
         | 
| 366 | 
            +
             | 
| 367 | 
            +
                    return attn_output, attn_weights, past_key_value
         | 
| 368 | 
            +
             | 
| 369 | 
            +
             | 
| 370 | 
            +
            class InternLM2FlashAttention2(InternLM2Attention):
         | 
| 371 | 
            +
                """
         | 
| 372 | 
            +
                InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays
         | 
| 373 | 
            +
                untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
         | 
| 374 | 
            +
                flash attention and deal with padding tokens in case the input contains any of them.
         | 
| 375 | 
            +
                """
         | 
| 376 | 
            +
             | 
| 377 | 
            +
                def __init__(self, *args, **kwargs):
         | 
| 378 | 
            +
                    super().__init__(*args, **kwargs)
         | 
| 379 | 
            +
             | 
| 380 | 
            +
                    # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
         | 
| 381 | 
            +
                    # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement,
         | 
| 382 | 
            +
                    #   that was made default for flash_attn>=2.1. This attribute is used to handle this difference.
         | 
| 383 | 
            +
                    # Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
         | 
| 384 | 
            +
                    # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1)
         | 
| 385 | 
            +
                    #   produces a wrong mask (top-left).
         | 
| 386 | 
            +
                    self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
         | 
| 387 | 
            +
             | 
| 388 | 
            +
                def forward(
         | 
| 389 | 
            +
                    self,
         | 
| 390 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 391 | 
            +
                    attention_mask: Optional[torch.LongTensor] = None,
         | 
| 392 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 393 | 
            +
                    past_key_value: Optional[Cache] = None,
         | 
| 394 | 
            +
                    output_attentions: bool = False,
         | 
| 395 | 
            +
                    use_cache: bool = False,
         | 
| 396 | 
            +
                    cache_position: Optional[torch.LongTensor] = None,
         | 
| 397 | 
            +
                ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
         | 
| 398 | 
            +
                    if isinstance(past_key_value, StaticCache):
         | 
| 399 | 
            +
                        raise ValueError(
         | 
| 400 | 
            +
                            "`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
         | 
| 401 | 
            +
                            "make sure to use `sdpa` in the mean time, and open an issue at "
         | 
| 402 | 
            +
                            "https://github.com/huggingface/transformers"
         | 
| 403 | 
            +
                        )
         | 
| 404 | 
            +
             | 
| 405 | 
            +
                    output_attentions = False
         | 
| 406 | 
            +
             | 
| 407 | 
            +
                    bsz, q_len, _ = hidden_states.size()
         | 
| 408 | 
            +
             | 
| 409 | 
            +
                    qkv_states = self.wqkv(hidden_states)
         | 
| 410 | 
            +
             | 
| 411 | 
            +
                    qkv_states = rearrange(
         | 
| 412 | 
            +
                        qkv_states,
         | 
| 413 | 
            +
                        "b q (h gs d) -> b q h gs d",
         | 
| 414 | 
            +
                        gs=2 + self.num_key_value_groups,
         | 
| 415 | 
            +
                        d=self.head_dim,
         | 
| 416 | 
            +
                    )
         | 
| 417 | 
            +
             | 
| 418 | 
            +
                    query_states = qkv_states[..., : self.num_key_value_groups, :]
         | 
| 419 | 
            +
                    query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d")
         | 
| 420 | 
            +
                    key_states = qkv_states[..., -2, :]
         | 
| 421 | 
            +
                    value_states = qkv_states[..., -1, :]
         | 
| 422 | 
            +
             | 
| 423 | 
            +
                    query_states = query_states.transpose(1, 2)
         | 
| 424 | 
            +
                    key_states = key_states.transpose(1, 2)
         | 
| 425 | 
            +
                    value_states = value_states.transpose(1, 2)
         | 
| 426 | 
            +
             | 
| 427 | 
            +
                    cos, sin = self.rotary_emb(value_states, position_ids)
         | 
| 428 | 
            +
                    query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
         | 
| 429 | 
            +
             | 
| 430 | 
            +
                    if past_key_value is not None:
         | 
| 431 | 
            +
                        # sin and cos are specific to RoPE models; cache_position needed for the static cache
         | 
| 432 | 
            +
                        cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
         | 
| 433 | 
            +
                        key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
         | 
| 434 | 
            +
             | 
| 435 | 
            +
                    # TODO: These transpose are quite inefficient but Flash Attention requires the layout
         | 
| 436 | 
            +
                    # [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
         | 
| 437 | 
            +
                    # to be able to avoid many of these transpose/reshape/view.
         | 
| 438 | 
            +
                    query_states = query_states.transpose(1, 2)
         | 
| 439 | 
            +
                    key_states = key_states.transpose(1, 2)
         | 
| 440 | 
            +
                    value_states = value_states.transpose(1, 2)
         | 
| 441 | 
            +
             | 
| 442 | 
            +
                    # dropout_rate = self.attention_dropout if self.training else 0.0
         | 
| 443 | 
            +
                    dropout_rate = 0.0
         | 
| 444 | 
            +
             | 
| 445 | 
            +
                    # In PEFT, usually we cast the layer norms in float32 for training stability reasons
         | 
| 446 | 
            +
                    # therefore the input hidden states gets silently casted in float32. Hence, we need
         | 
| 447 | 
            +
                    # cast them back in the correct dtype just to be sure everything works as expected.
         | 
| 448 | 
            +
                    # This might slowdown training & inference so it is recommended to not cast the LayerNorms
         | 
| 449 | 
            +
                    # in fp32. (InternLM2RMSNorm handles it correctly)
         | 
| 450 | 
            +
             | 
| 451 | 
            +
                    input_dtype = query_states.dtype
         | 
| 452 | 
            +
                    if input_dtype == torch.float32:
         | 
| 453 | 
            +
                        if torch.is_autocast_enabled():
         | 
| 454 | 
            +
                            target_dtype = torch.get_autocast_gpu_dtype()
         | 
| 455 | 
            +
                        # Handle the case where the model is quantized
         | 
| 456 | 
            +
                        elif hasattr(self.config, "_pre_quantization_dtype"):
         | 
| 457 | 
            +
                            target_dtype = self.config._pre_quantization_dtype
         | 
| 458 | 
            +
                        else:
         | 
| 459 | 
            +
                            target_dtype = self.wqkv.weight.dtype
         | 
| 460 | 
            +
             | 
| 461 | 
            +
                        logger.warning_once(
         | 
| 462 | 
            +
                            f"The input hidden states seems to be silently casted in float32, this might be related to"
         | 
| 463 | 
            +
                            f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
         | 
| 464 | 
            +
                            f" {target_dtype}."
         | 
| 465 | 
            +
                        )
         | 
| 466 | 
            +
             | 
| 467 | 
            +
                        query_states = query_states.to(target_dtype)
         | 
| 468 | 
            +
                        key_states = key_states.to(target_dtype)
         | 
| 469 | 
            +
                        value_states = value_states.to(target_dtype)
         | 
| 470 | 
            +
             | 
| 471 | 
            +
                    attn_output = self._flash_attention_forward(
         | 
| 472 | 
            +
                        query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
         | 
| 473 | 
            +
                    )
         | 
| 474 | 
            +
             | 
| 475 | 
            +
                    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
         | 
| 476 | 
            +
                    attn_output = self.wo(attn_output)
         | 
| 477 | 
            +
             | 
| 478 | 
            +
                    if not output_attentions:
         | 
| 479 | 
            +
                        attn_weights = None
         | 
| 480 | 
            +
             | 
| 481 | 
            +
                    return attn_output, attn_weights, past_key_value  # pylint: disable=E0606
         | 
| 482 | 
            +
             | 
| 483 | 
            +
                def _flash_attention_forward(
         | 
| 484 | 
            +
                    self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
         | 
| 485 | 
            +
                ):
         | 
| 486 | 
            +
                    """
         | 
| 487 | 
            +
                    Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
         | 
| 488 | 
            +
                    first unpad the input, then computes the attention scores and pad the final attention scores.
         | 
| 489 | 
            +
                    Args:
         | 
| 490 | 
            +
                        query_states (`torch.Tensor`):
         | 
| 491 | 
            +
                            Input query states to be passed to Flash Attention API
         | 
| 492 | 
            +
                        key_states (`torch.Tensor`):
         | 
| 493 | 
            +
                            Input key states to be passed to Flash Attention API
         | 
| 494 | 
            +
                        value_states (`torch.Tensor`):
         | 
| 495 | 
            +
                            Input value states to be passed to Flash Attention API
         | 
| 496 | 
            +
                        attention_mask (`torch.Tensor`):
         | 
| 497 | 
            +
                            The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
         | 
| 498 | 
            +
                            position of padding tokens and 1 for the position of non-padding tokens.
         | 
| 499 | 
            +
                        dropout (`float`):
         | 
| 500 | 
            +
                            Attention dropout
         | 
| 501 | 
            +
                        softmax_scale (`float`, *optional*):
         | 
| 502 | 
            +
                            The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
         | 
| 503 | 
            +
                    """
         | 
| 504 | 
            +
                    if not self._flash_attn_uses_top_left_mask:
         | 
| 505 | 
            +
                        causal = self.is_causal
         | 
| 506 | 
            +
                    else:
         | 
| 507 | 
            +
                        # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1.
         | 
| 508 | 
            +
                        # For details, please see the comment in InternLM2FlashAttention2 __init__.
         | 
| 509 | 
            +
                        causal = self.is_causal and query_length != 1
         | 
| 510 | 
            +
             | 
| 511 | 
            +
                    # Contains at least one padding token in the sequence
         | 
| 512 | 
            +
                    if attention_mask is not None:
         | 
| 513 | 
            +
                        batch_size = query_states.shape[0]
         | 
| 514 | 
            +
                        query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
         | 
| 515 | 
            +
                            query_states, key_states, value_states, attention_mask, query_length
         | 
| 516 | 
            +
                        )
         | 
| 517 | 
            +
             | 
| 518 | 
            +
                        cu_seqlens_q, cu_seqlens_k = cu_seq_lens
         | 
| 519 | 
            +
                        max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
         | 
| 520 | 
            +
             | 
| 521 | 
            +
                        attn_output_unpad = flash_attn_varlen_func(  # pylint: disable=E0606
         | 
| 522 | 
            +
                            query_states,
         | 
| 523 | 
            +
                            key_states,
         | 
| 524 | 
            +
                            value_states,
         | 
| 525 | 
            +
                            cu_seqlens_q=cu_seqlens_q,
         | 
| 526 | 
            +
                            cu_seqlens_k=cu_seqlens_k,
         | 
| 527 | 
            +
                            max_seqlen_q=max_seqlen_in_batch_q,
         | 
| 528 | 
            +
                            max_seqlen_k=max_seqlen_in_batch_k,
         | 
| 529 | 
            +
                            dropout_p=dropout,
         | 
| 530 | 
            +
                            softmax_scale=softmax_scale,
         | 
| 531 | 
            +
                            causal=causal,
         | 
| 532 | 
            +
                        )
         | 
| 533 | 
            +
             | 
| 534 | 
            +
                        attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)  # pylint: disable=E0606
         | 
| 535 | 
            +
                    else:
         | 
| 536 | 
            +
                        attn_output = flash_attn_func(  # pylint: disable=E0606
         | 
| 537 | 
            +
                            query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
         | 
| 538 | 
            +
                        )
         | 
| 539 | 
            +
             | 
| 540 | 
            +
                    return attn_output
         | 
| 541 | 
            +
             | 
| 542 | 
            +
                def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
         | 
| 543 | 
            +
                    indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
         | 
| 544 | 
            +
                    batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
         | 
| 545 | 
            +
             | 
| 546 | 
            +
                    key_layer = index_first_axis(  # pylint: disable=E0606
         | 
| 547 | 
            +
                        key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
         | 
| 548 | 
            +
                    )
         | 
| 549 | 
            +
                    value_layer = index_first_axis(  # pylint: disable=E0606
         | 
| 550 | 
            +
                        value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
         | 
| 551 | 
            +
                    )
         | 
| 552 | 
            +
                    if query_length == kv_seq_len:
         | 
| 553 | 
            +
                        query_layer = index_first_axis(  # pylint: disable=E0606
         | 
| 554 | 
            +
                            query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
         | 
| 555 | 
            +
                        )
         | 
| 556 | 
            +
                        cu_seqlens_q = cu_seqlens_k
         | 
| 557 | 
            +
                        max_seqlen_in_batch_q = max_seqlen_in_batch_k
         | 
| 558 | 
            +
                        indices_q = indices_k
         | 
| 559 | 
            +
                    elif query_length == 1:
         | 
| 560 | 
            +
                        max_seqlen_in_batch_q = 1
         | 
| 561 | 
            +
                        cu_seqlens_q = torch.arange(
         | 
| 562 | 
            +
                            batch_size + 1, dtype=torch.int32, device=query_layer.device
         | 
| 563 | 
            +
                        )  # There is a memcpy here, that is very bad.
         | 
| 564 | 
            +
                        indices_q = cu_seqlens_q[:-1]
         | 
| 565 | 
            +
                        query_layer = query_layer.squeeze(1)
         | 
| 566 | 
            +
                    else:
         | 
| 567 | 
            +
                        # The -q_len: slice assumes left padding.
         | 
| 568 | 
            +
                        attention_mask = attention_mask[:, -query_length:]
         | 
| 569 | 
            +
                        query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(  # pylint: disable=E0606
         | 
| 570 | 
            +
                            query_layer, attention_mask
         | 
| 571 | 
            +
                        )
         | 
| 572 | 
            +
             | 
| 573 | 
            +
                    return (
         | 
| 574 | 
            +
                        query_layer,
         | 
| 575 | 
            +
                        key_layer,
         | 
| 576 | 
            +
                        value_layer,
         | 
| 577 | 
            +
                        indices_q,
         | 
| 578 | 
            +
                        (cu_seqlens_q, cu_seqlens_k),
         | 
| 579 | 
            +
                        (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
         | 
| 580 | 
            +
                    )
         | 
| 581 | 
            +
             | 
| 582 | 
            +
             | 
| 583 | 
            +
            # Copied from transformers.models.llama.modeling_llama.LllamaSdpaAttention with Llama->InternLM2
         | 
| 584 | 
            +
            class InternLM2SdpaAttention(InternLM2Attention):
         | 
| 585 | 
            +
                """
         | 
| 586 | 
            +
                InternLM2 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
         | 
| 587 | 
            +
                `InternLM2Attention` as the weights of the module stays untouched. The only changes are on the forward pass
         | 
| 588 | 
            +
                to adapt to SDPA API.
         | 
| 589 | 
            +
                """
         | 
| 590 | 
            +
             | 
| 591 | 
            +
                # Adapted from InternLM2Attention.forward
         | 
| 592 | 
            +
                def forward(
         | 
| 593 | 
            +
                    self,
         | 
| 594 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 595 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 596 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 597 | 
            +
                    past_key_value: Optional[Cache] = None,
         | 
| 598 | 
            +
                    output_attentions: bool = False,
         | 
| 599 | 
            +
                    use_cache: bool = False,
         | 
| 600 | 
            +
                    cache_position: Optional[torch.LongTensor] = None,
         | 
| 601 | 
            +
                ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
         | 
| 602 | 
            +
                    if output_attentions:
         | 
| 603 | 
            +
                        # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"`
         | 
| 604 | 
            +
                        # once this is implemented.
         | 
| 605 | 
            +
                        logger.warning_once(
         | 
| 606 | 
            +
                            "InternLM2Model uses InternLM2SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` "
         | 
| 607 | 
            +
                            "does not support `output_attentions=True`. Falling back to the manual attention implementation, "
         | 
| 608 | 
            +
                            "but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. "
         | 
| 609 | 
            +
                            'This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
         | 
| 610 | 
            +
                        )
         | 
| 611 | 
            +
                        return super().forward(
         | 
| 612 | 
            +
                            hidden_states=hidden_states,
         | 
| 613 | 
            +
                            attention_mask=attention_mask,
         | 
| 614 | 
            +
                            position_ids=position_ids,
         | 
| 615 | 
            +
                            past_key_value=past_key_value,
         | 
| 616 | 
            +
                            output_attentions=output_attentions,
         | 
| 617 | 
            +
                            use_cache=use_cache,
         | 
| 618 | 
            +
                            cache_position=cache_position,
         | 
| 619 | 
            +
                        )
         | 
| 620 | 
            +
             | 
| 621 | 
            +
                    bsz, q_len, _ = hidden_states.size()
         | 
| 622 | 
            +
             | 
| 623 | 
            +
                    qkv_states = self.wqkv(hidden_states)
         | 
| 624 | 
            +
             | 
| 625 | 
            +
                    qkv_states = rearrange(
         | 
| 626 | 
            +
                        qkv_states,
         | 
| 627 | 
            +
                        "b q (h gs d) -> b q h gs d",
         | 
| 628 | 
            +
                        gs=2 + self.num_key_value_groups,
         | 
| 629 | 
            +
                        d=self.head_dim,
         | 
| 630 | 
            +
                    )
         | 
| 631 | 
            +
             | 
| 632 | 
            +
                    query_states = qkv_states[..., : self.num_key_value_groups, :]
         | 
| 633 | 
            +
                    query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d")
         | 
| 634 | 
            +
                    key_states = qkv_states[..., -2, :]
         | 
| 635 | 
            +
                    value_states = qkv_states[..., -1, :]
         | 
| 636 | 
            +
             | 
| 637 | 
            +
                    query_states = query_states.transpose(1, 2)
         | 
| 638 | 
            +
                    key_states = key_states.transpose(1, 2)
         | 
| 639 | 
            +
                    value_states = value_states.transpose(1, 2)
         | 
| 640 | 
            +
             | 
| 641 | 
            +
                    cos, sin = self.rotary_emb(value_states, position_ids)
         | 
| 642 | 
            +
                    query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
         | 
| 643 | 
            +
             | 
| 644 | 
            +
                    if past_key_value is not None:
         | 
| 645 | 
            +
                        # sin and cos are specific to RoPE models; cache_position needed for the static cache
         | 
| 646 | 
            +
                        cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
         | 
| 647 | 
            +
                        key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
         | 
| 648 | 
            +
             | 
| 649 | 
            +
                    key_states = repeat_kv(key_states, self.num_key_value_groups)
         | 
| 650 | 
            +
                    value_states = repeat_kv(value_states, self.num_key_value_groups)
         | 
| 651 | 
            +
             | 
| 652 | 
            +
                    causal_mask = attention_mask
         | 
| 653 | 
            +
                    if attention_mask is not None:
         | 
| 654 | 
            +
                        causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
         | 
| 655 | 
            +
             | 
| 656 | 
            +
                    # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with
         | 
| 657 | 
            +
                    # custom attn_mask, Reference: https://github.com/pytorch/pytorch/issues/112577.
         | 
| 658 | 
            +
                    if query_states.device.type == "cuda" and causal_mask is not None:
         | 
| 659 | 
            +
                        query_states = query_states.contiguous()
         | 
| 660 | 
            +
                        key_states = key_states.contiguous()
         | 
| 661 | 
            +
                        value_states = value_states.contiguous()
         | 
| 662 | 
            +
             | 
| 663 | 
            +
                    # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of
         | 
| 664 | 
            +
                    # an inline conditional assignment in SDPA to support both torch.compile's dynamic shapes and full graph
         | 
| 665 | 
            +
                    # options. An inline conditional prevents dynamic shapes from compiling.
         | 
| 666 | 
            +
                    is_causal = bool(causal_mask is None and q_len > 1)
         | 
| 667 | 
            +
             | 
| 668 | 
            +
                    attn_output = torch.nn.functional.scaled_dot_product_attention(  # pylint: disable=E1102
         | 
| 669 | 
            +
                        query_states,
         | 
| 670 | 
            +
                        key_states,
         | 
| 671 | 
            +
                        value_states,
         | 
| 672 | 
            +
                        attn_mask=causal_mask,
         | 
| 673 | 
            +
                        dropout_p=0.0,
         | 
| 674 | 
            +
                        is_causal=is_causal,
         | 
| 675 | 
            +
                    )
         | 
| 676 | 
            +
             | 
| 677 | 
            +
                    attn_output = attn_output.transpose(1, 2).contiguous()
         | 
| 678 | 
            +
                    attn_output = attn_output.view(bsz, q_len, self.hidden_size)
         | 
| 679 | 
            +
             | 
| 680 | 
            +
                    attn_output = self.wo(attn_output)
         | 
| 681 | 
            +
             | 
| 682 | 
            +
                    return attn_output, None, past_key_value
         | 
| 683 | 
            +
             | 
| 684 | 
            +
             | 
| 685 | 
            +
            INTERNLM2_ATTENTION_CLASSES = {
         | 
| 686 | 
            +
                "eager": InternLM2Attention,
         | 
| 687 | 
            +
                "flash_attention_2": InternLM2FlashAttention2,
         | 
| 688 | 
            +
                "sdpa": InternLM2SdpaAttention,
         | 
| 689 | 
            +
            }
         | 
| 690 | 
            +
             | 
| 691 | 
            +
             | 
| 692 | 
            +
            # Modified from transformers.models.llama.modeling_llama.LlamaDecoderLayer with Llama->InternLM2
         | 
| 693 | 
            +
            class InternLM2DecoderLayer(nn.Module):
         | 
| 694 | 
            +
                """InternLM2 Decoder Layer. This module is a single layer of the InternLM2 model."""
         | 
| 695 | 
            +
             | 
| 696 | 
            +
                def __init__(self, config: InternLM2Config, layer_idx: int):
         | 
| 697 | 
            +
                    super().__init__()
         | 
| 698 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 699 | 
            +
                    self.layer_idx = layer_idx
         | 
| 700 | 
            +
             | 
| 701 | 
            +
                    self.attention = INTERNLM2_ATTENTION_CLASSES[config.attn_implementation](config=config, layer_idx=layer_idx)
         | 
| 702 | 
            +
             | 
| 703 | 
            +
                    self.feed_forward = InternLM2MLP(config)
         | 
| 704 | 
            +
                    self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         | 
| 705 | 
            +
                    self.ffn_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         | 
| 706 | 
            +
             | 
| 707 | 
            +
                def forward(
         | 
| 708 | 
            +
                    self,
         | 
| 709 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 710 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 711 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 712 | 
            +
                    past_key_value: Optional[Cache] = None,
         | 
| 713 | 
            +
                    output_attentions: Optional[bool] = False,
         | 
| 714 | 
            +
                    use_cache: Optional[bool] = False,
         | 
| 715 | 
            +
                    cache_position: Optional[torch.LongTensor] = None,
         | 
| 716 | 
            +
                ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
         | 
| 717 | 
            +
                    """
         | 
| 718 | 
            +
                    Args:
         | 
| 719 | 
            +
                        hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
         | 
| 720 | 
            +
                        attention_mask (`torch.FloatTensor`, *optional*):
         | 
| 721 | 
            +
                            attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
         | 
| 722 | 
            +
                            query_sequence_length, key_sequence_length)` if default attention is used.
         | 
| 723 | 
            +
                        output_attentions (`bool`, *optional*):
         | 
| 724 | 
            +
                            Whether or not to return the attentions tensors of all attention layers. See `attentions` under
         | 
| 725 | 
            +
                            returned tensors for more detail.
         | 
| 726 | 
            +
                        use_cache (`bool`, *optional*):
         | 
| 727 | 
            +
                            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
         | 
| 728 | 
            +
                            (see `past_key_values`).
         | 
| 729 | 
            +
                        past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
         | 
| 730 | 
            +
                    """
         | 
| 731 | 
            +
                    residual = hidden_states
         | 
| 732 | 
            +
             | 
| 733 | 
            +
                    hidden_states = self.attention_norm(hidden_states)
         | 
| 734 | 
            +
             | 
| 735 | 
            +
                    # Self Attention
         | 
| 736 | 
            +
                    hidden_states, self_attn_weights, present_key_value = self.attention(
         | 
| 737 | 
            +
                        hidden_states=hidden_states,
         | 
| 738 | 
            +
                        attention_mask=attention_mask,
         | 
| 739 | 
            +
                        position_ids=position_ids,
         | 
| 740 | 
            +
                        past_key_value=past_key_value,
         | 
| 741 | 
            +
                        output_attentions=output_attentions,
         | 
| 742 | 
            +
                        use_cache=use_cache,
         | 
| 743 | 
            +
                        cache_position=cache_position,
         | 
| 744 | 
            +
                    )
         | 
| 745 | 
            +
                    hidden_states = residual + hidden_states
         | 
| 746 | 
            +
             | 
| 747 | 
            +
                    # Fully Connected
         | 
| 748 | 
            +
                    residual = hidden_states
         | 
| 749 | 
            +
                    hidden_states = self.ffn_norm(hidden_states)
         | 
| 750 | 
            +
                    hidden_states = self.feed_forward(hidden_states)
         | 
| 751 | 
            +
                    hidden_states = residual + hidden_states
         | 
| 752 | 
            +
             | 
| 753 | 
            +
                    outputs = (hidden_states,)
         | 
| 754 | 
            +
             | 
| 755 | 
            +
                    if output_attentions:
         | 
| 756 | 
            +
                        outputs += (self_attn_weights,)
         | 
| 757 | 
            +
             | 
| 758 | 
            +
                    if use_cache:
         | 
| 759 | 
            +
                        outputs += (present_key_value,)
         | 
| 760 | 
            +
             | 
| 761 | 
            +
                    return outputs
         | 
| 762 | 
            +
             | 
| 763 | 
            +
             | 
| 764 | 
            +
            InternLM2_START_DOCSTRING = r"""
         | 
| 765 | 
            +
                This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
         | 
| 766 | 
            +
                library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
         | 
| 767 | 
            +
                etc.)
         | 
| 768 | 
            +
                This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
         | 
| 769 | 
            +
                Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
         | 
| 770 | 
            +
                and behavior.
         | 
| 771 | 
            +
                Parameters:
         | 
| 772 | 
            +
                    config ([`InternLM2Config`]):
         | 
| 773 | 
            +
                        Model configuration class with all the parameters of the model. Initializing with a config file does not
         | 
| 774 | 
            +
                        load the weights associated with the model, only the configuration. Check out the
         | 
| 775 | 
            +
                        [`~PreTrainedModel.from_pretrained`] method to load the model weights.
         | 
| 776 | 
            +
            """
         | 
| 777 | 
            +
             | 
| 778 | 
            +
             | 
| 779 | 
            +
            # Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->InternLM2
         | 
| 780 | 
            +
            @add_start_docstrings(
         | 
| 781 | 
            +
                "The bare InternLM2 Model outputting raw hidden-states without any specific head on top.",
         | 
| 782 | 
            +
                InternLM2_START_DOCSTRING,
         | 
| 783 | 
            +
            )
         | 
| 784 | 
            +
            class InternLM2PreTrainedModel(PreTrainedModel):
         | 
| 785 | 
            +
                """
         | 
| 786 | 
            +
                InternLM2 pretraiend model's base class.
         | 
| 787 | 
            +
                """
         | 
| 788 | 
            +
             | 
| 789 | 
            +
                config_class = InternLM2Config
         | 
| 790 | 
            +
                base_model_prefix = "model"
         | 
| 791 | 
            +
                supports_gradient_checkpointing = True
         | 
| 792 | 
            +
                _no_split_modules = ["InternLM2DecoderLayer"]
         | 
| 793 | 
            +
                _skip_keys_device_placement = ["past_key_values"]
         | 
| 794 | 
            +
                _supports_flash_attn_2 = True
         | 
| 795 | 
            +
                _supports_sdpa = True
         | 
| 796 | 
            +
                _supports_cache_class = True
         | 
| 797 | 
            +
                _supports_quantized_cache = True
         | 
| 798 | 
            +
                _supports_static_cache = True
         | 
| 799 | 
            +
             | 
| 800 | 
            +
                def _init_weights(self, module):
         | 
| 801 | 
            +
                    std = self.config.initializer_range
         | 
| 802 | 
            +
                    if isinstance(module, nn.Linear):
         | 
| 803 | 
            +
                        module.weight.data.normal_(mean=0.0, std=std)
         | 
| 804 | 
            +
                        if module.bias is not None:
         | 
| 805 | 
            +
                            module.bias.data.zero_()
         | 
| 806 | 
            +
                    elif isinstance(module, nn.Embedding):
         | 
| 807 | 
            +
                        module.weight.data.normal_(mean=0.0, std=std)
         | 
| 808 | 
            +
                        if module.padding_idx is not None:
         | 
| 809 | 
            +
                            module.weight.data[module.padding_idx].zero_()
         | 
| 810 | 
            +
             | 
| 811 | 
            +
             | 
| 812 | 
            +
            InternLM2_INPUTS_DOCSTRING = r"""
         | 
| 813 | 
            +
                Args:
         | 
| 814 | 
            +
                    input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
         | 
| 815 | 
            +
                        Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
         | 
| 816 | 
            +
                        it.
         | 
| 817 | 
            +
                        Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
         | 
| 818 | 
            +
                        [`PreTrainedTokenizer.__call__`] for details.
         | 
| 819 | 
            +
                        [What are input IDs?](../glossary#input-ids)
         | 
| 820 | 
            +
                    attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 821 | 
            +
                        Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
         | 
| 822 | 
            +
                        - 1 for tokens that are **not masked**,
         | 
| 823 | 
            +
                        - 0 for tokens that are **masked**.
         | 
| 824 | 
            +
                        [What are attention masks?](../glossary#attention-mask)
         | 
| 825 | 
            +
                        Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
         | 
| 826 | 
            +
                        [`PreTrainedTokenizer.__call__`] for details.
         | 
| 827 | 
            +
                        If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
         | 
| 828 | 
            +
                        `past_key_values`).
         | 
| 829 | 
            +
                        If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
         | 
| 830 | 
            +
                        and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
         | 
| 831 | 
            +
                        information on the default strategy.
         | 
| 832 | 
            +
                        - 1 indicates the head is **not masked**,
         | 
| 833 | 
            +
                        - 0 indicates the head is **masked**.
         | 
| 834 | 
            +
                    position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 835 | 
            +
                        Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
         | 
| 836 | 
            +
                        config.n_positions - 1]`.
         | 
| 837 | 
            +
                        [What are position IDs?](../glossary#position-ids)
         | 
| 838 | 
            +
                    past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
         | 
| 839 | 
            +
                        Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
         | 
| 840 | 
            +
                        blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
         | 
| 841 | 
            +
                        returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
         | 
| 842 | 
            +
                        Two formats are allowed:
         | 
| 843 | 
            +
                        - a [`~cache_utils.Cache`] instance;
         | 
| 844 | 
            +
                        - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
         | 
| 845 | 
            +
                        shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
         | 
| 846 | 
            +
                        cache format.
         | 
| 847 | 
            +
                        The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
         | 
| 848 | 
            +
                        legacy cache format will be returned.
         | 
| 849 | 
            +
                        If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
         | 
| 850 | 
            +
                        have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
         | 
| 851 | 
            +
                        of shape `(batch_size, sequence_length)`.
         | 
| 852 | 
            +
                    inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
         | 
| 853 | 
            +
                        Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
         | 
| 854 | 
            +
                        is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
         | 
| 855 | 
            +
                        model's internal embedding lookup matrix.
         | 
| 856 | 
            +
                    use_cache (`bool`, *optional*):
         | 
| 857 | 
            +
                        If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
         | 
| 858 | 
            +
                        `past_key_values`).
         | 
| 859 | 
            +
                    output_attentions (`bool`, *optional*):
         | 
| 860 | 
            +
                        Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
         | 
| 861 | 
            +
                        tensors for more detail.
         | 
| 862 | 
            +
                    output_hidden_states (`bool`, *optional*):
         | 
| 863 | 
            +
                        Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
         | 
| 864 | 
            +
                        more detail.
         | 
| 865 | 
            +
                    return_dict (`bool`, *optional*):
         | 
| 866 | 
            +
                        Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
         | 
| 867 | 
            +
                    cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
         | 
| 868 | 
            +
                        Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
         | 
| 869 | 
            +
                        this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
         | 
| 870 | 
            +
                        the complete sequence length.
         | 
| 871 | 
            +
            """
         | 
| 872 | 
            +
             | 
| 873 | 
            +
             | 
| 874 | 
            +
            # Modified from transformers.models.llama.modeling_llama.LlamaModel with Llama->InternLM2
         | 
| 875 | 
            +
            @add_start_docstrings(
         | 
| 876 | 
            +
                "The bare InternLM2 Model outputting raw hidden-states without any specific head on top.",
         | 
| 877 | 
            +
                InternLM2_START_DOCSTRING,
         | 
| 878 | 
            +
            )
         | 
| 879 | 
            +
            class InternLM2Model(InternLM2PreTrainedModel):
         | 
| 880 | 
            +
                """
         | 
| 881 | 
            +
                Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLM2DecoderLayer`]
         | 
| 882 | 
            +
                Args:
         | 
| 883 | 
            +
                    config: InternLM2Config
         | 
| 884 | 
            +
                """
         | 
| 885 | 
            +
             | 
| 886 | 
            +
                _auto_class = "AutoModel"
         | 
| 887 | 
            +
             | 
| 888 | 
            +
                def __init__(self, config: InternLM2Config):
         | 
| 889 | 
            +
                    super().__init__(config)
         | 
| 890 | 
            +
                    self.padding_idx = config.pad_token_id
         | 
| 891 | 
            +
                    self.vocab_size = config.vocab_size
         | 
| 892 | 
            +
                    self.config = config
         | 
| 893 | 
            +
             | 
| 894 | 
            +
                    self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
         | 
| 895 | 
            +
             | 
| 896 | 
            +
                    self.layers = nn.ModuleList(
         | 
| 897 | 
            +
                        [InternLM2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
         | 
| 898 | 
            +
                    )
         | 
| 899 | 
            +
                    self.norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         | 
| 900 | 
            +
             | 
| 901 | 
            +
                    self.gradient_checkpointing = False
         | 
| 902 | 
            +
                    # Initialize weights and apply final processing
         | 
| 903 | 
            +
                    self.post_init()
         | 
| 904 | 
            +
             | 
| 905 | 
            +
                def get_input_embeddings(self):
         | 
| 906 | 
            +
                    return self.tok_embeddings
         | 
| 907 | 
            +
             | 
| 908 | 
            +
                def set_input_embeddings(self, value):
         | 
| 909 | 
            +
                    self.tok_embeddings = value
         | 
| 910 | 
            +
             | 
| 911 | 
            +
                @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
         | 
| 912 | 
            +
                def forward(
         | 
| 913 | 
            +
                    self,
         | 
| 914 | 
            +
                    input_ids: torch.LongTensor = None,
         | 
| 915 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 916 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 917 | 
            +
                    past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
         | 
| 918 | 
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 919 | 
            +
                    use_cache: Optional[bool] = None,
         | 
| 920 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 921 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 922 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 923 | 
            +
                    cache_position: Optional[torch.LongTensor] = None,
         | 
| 924 | 
            +
                ) -> Union[Tuple, BaseModelOutputWithPast]:
         | 
| 925 | 
            +
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         | 
| 926 | 
            +
                    output_hidden_states = (
         | 
| 927 | 
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         | 
| 928 | 
            +
                    )
         | 
| 929 | 
            +
                    use_cache = use_cache if use_cache is not None else self.config.use_cache
         | 
| 930 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 931 | 
            +
             | 
| 932 | 
            +
                    if (input_ids is None) ^ (inputs_embeds is not None):
         | 
| 933 | 
            +
                        raise ValueError(
         | 
| 934 | 
            +
                            "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
         | 
| 935 | 
            +
                        )
         | 
| 936 | 
            +
             | 
| 937 | 
            +
                    if self.gradient_checkpointing and self.training and use_cache:
         | 
| 938 | 
            +
                        logger.warning_once(
         | 
| 939 | 
            +
                            "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
         | 
| 940 | 
            +
                        )
         | 
| 941 | 
            +
                        use_cache = False
         | 
| 942 | 
            +
             | 
| 943 | 
            +
                    if inputs_embeds is None:
         | 
| 944 | 
            +
                        inputs_embeds = self.tok_embeddings(input_ids)
         | 
| 945 | 
            +
             | 
| 946 | 
            +
                    return_legacy_cache = False
         | 
| 947 | 
            +
                    if use_cache and not isinstance(past_key_values, Cache):  # kept for BC (non `Cache` `past_key_values` inputs)
         | 
| 948 | 
            +
                        return_legacy_cache = True
         | 
| 949 | 
            +
                        past_key_values = DynamicCache.from_legacy_cache(past_key_values)
         | 
| 950 | 
            +
             | 
| 951 | 
            +
                    if cache_position is None:
         | 
| 952 | 
            +
                        past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
         | 
| 953 | 
            +
                        cache_position = torch.arange(
         | 
| 954 | 
            +
                            past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
         | 
| 955 | 
            +
                        )
         | 
| 956 | 
            +
                    if position_ids is None:
         | 
| 957 | 
            +
                        position_ids = cache_position.unsqueeze(0)
         | 
| 958 | 
            +
             | 
| 959 | 
            +
                    causal_mask = self._update_causal_mask(
         | 
| 960 | 
            +
                        attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
         | 
| 961 | 
            +
                    )
         | 
| 962 | 
            +
             | 
| 963 | 
            +
                    # embed positions
         | 
| 964 | 
            +
                    hidden_states = inputs_embeds
         | 
| 965 | 
            +
             | 
| 966 | 
            +
                    # decoder layers
         | 
| 967 | 
            +
                    all_hidden_states = () if output_hidden_states else None
         | 
| 968 | 
            +
                    all_self_attns = () if output_attentions else None
         | 
| 969 | 
            +
                    next_decoder_cache = None
         | 
| 970 | 
            +
             | 
| 971 | 
            +
                    for decoder_layer in self.layers:
         | 
| 972 | 
            +
                        if output_hidden_states:
         | 
| 973 | 
            +
                            all_hidden_states += (hidden_states,)
         | 
| 974 | 
            +
             | 
| 975 | 
            +
                        if self.gradient_checkpointing and self.training:
         | 
| 976 | 
            +
                            layer_outputs = self._gradient_checkpointing_func(
         | 
| 977 | 
            +
                                decoder_layer.__call__,
         | 
| 978 | 
            +
                                hidden_states,
         | 
| 979 | 
            +
                                causal_mask,
         | 
| 980 | 
            +
                                position_ids,
         | 
| 981 | 
            +
                                past_key_values,
         | 
| 982 | 
            +
                                output_attentions,
         | 
| 983 | 
            +
                                use_cache,
         | 
| 984 | 
            +
                                cache_position,
         | 
| 985 | 
            +
                            )
         | 
| 986 | 
            +
                        else:
         | 
| 987 | 
            +
                            layer_outputs = decoder_layer(
         | 
| 988 | 
            +
                                hidden_states,
         | 
| 989 | 
            +
                                attention_mask=causal_mask,
         | 
| 990 | 
            +
                                position_ids=position_ids,
         | 
| 991 | 
            +
                                past_key_value=past_key_values,
         | 
| 992 | 
            +
                                output_attentions=output_attentions,
         | 
| 993 | 
            +
                                use_cache=use_cache,
         | 
| 994 | 
            +
                                cache_position=cache_position,
         | 
| 995 | 
            +
                            )
         | 
| 996 | 
            +
             | 
| 997 | 
            +
                        hidden_states = layer_outputs[0]
         | 
| 998 | 
            +
             | 
| 999 | 
            +
                        if use_cache:
         | 
| 1000 | 
            +
                            next_decoder_cache = layer_outputs[2 if output_attentions else 1]
         | 
| 1001 | 
            +
             | 
| 1002 | 
            +
                        if output_attentions:
         | 
| 1003 | 
            +
                            all_self_attns += (layer_outputs[1],)
         | 
| 1004 | 
            +
             | 
| 1005 | 
            +
                    hidden_states = self.norm(hidden_states)
         | 
| 1006 | 
            +
             | 
| 1007 | 
            +
                    # add hidden states from the last decoder layer
         | 
| 1008 | 
            +
                    if output_hidden_states:
         | 
| 1009 | 
            +
                        all_hidden_states += (hidden_states,)
         | 
| 1010 | 
            +
             | 
| 1011 | 
            +
                    next_cache = next_decoder_cache if use_cache else None
         | 
| 1012 | 
            +
                    if return_legacy_cache:
         | 
| 1013 | 
            +
                        next_cache = next_cache.to_legacy_cache()
         | 
| 1014 | 
            +
             | 
| 1015 | 
            +
                    if not return_dict:
         | 
| 1016 | 
            +
                        return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
         | 
| 1017 | 
            +
                    return BaseModelOutputWithPast(
         | 
| 1018 | 
            +
                        last_hidden_state=hidden_states,
         | 
| 1019 | 
            +
                        past_key_values=next_cache,
         | 
| 1020 | 
            +
                        hidden_states=all_hidden_states,
         | 
| 1021 | 
            +
                        attentions=all_self_attns,
         | 
| 1022 | 
            +
                    )
         | 
| 1023 | 
            +
             | 
| 1024 | 
            +
                def _update_causal_mask(
         | 
| 1025 | 
            +
                    self,
         | 
| 1026 | 
            +
                    attention_mask: torch.Tensor,
         | 
| 1027 | 
            +
                    input_tensor: torch.Tensor,
         | 
| 1028 | 
            +
                    cache_position: torch.Tensor,
         | 
| 1029 | 
            +
                    past_key_values: Cache,
         | 
| 1030 | 
            +
                    output_attentions: bool,
         | 
| 1031 | 
            +
                ):
         | 
| 1032 | 
            +
                    # TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length
         | 
| 1033 | 
            +
                    # even when the static KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at
         | 
| 1034 | 
            +
                    # each decode steps due to the dynamic shapes. (`recording cudagraph tree for symint key 13`, etc.), which is
         | 
| 1035 | 
            +
                    # VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using `fullgraph=True`.
         | 
| 1036 | 
            +
                    # See more context in https://github.com/huggingface/transformers/pull/29114
         | 
| 1037 | 
            +
             | 
| 1038 | 
            +
                    if self.config.attn_implementation == "flash_attention_2":
         | 
| 1039 | 
            +
                        if attention_mask is not None and 0.0 in attention_mask:
         | 
| 1040 | 
            +
                            return attention_mask
         | 
| 1041 | 
            +
                        return None
         | 
| 1042 | 
            +
             | 
| 1043 | 
            +
                    # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
         | 
| 1044 | 
            +
                    # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
         | 
| 1045 | 
            +
                    # to infer the attention mask.
         | 
| 1046 | 
            +
                    past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
         | 
| 1047 | 
            +
                    using_static_cache = isinstance(past_key_values, StaticCache)
         | 
| 1048 | 
            +
             | 
| 1049 | 
            +
                    # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
         | 
| 1050 | 
            +
                    if self.config.attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
         | 
| 1051 | 
            +
                        if AttentionMaskConverter._ignore_causal_mask_sdpa(
         | 
| 1052 | 
            +
                            attention_mask,
         | 
| 1053 | 
            +
                            inputs_embeds=input_tensor,
         | 
| 1054 | 
            +
                            past_key_values_length=past_seen_tokens,
         | 
| 1055 | 
            +
                            is_training=self.training,
         | 
| 1056 | 
            +
                        ):
         | 
| 1057 | 
            +
                            return None
         | 
| 1058 | 
            +
             | 
| 1059 | 
            +
                    dtype, device = input_tensor.dtype, input_tensor.device
         | 
| 1060 | 
            +
                    min_dtype = torch.finfo(dtype).min
         | 
| 1061 | 
            +
                    sequence_length = input_tensor.shape[1]
         | 
| 1062 | 
            +
                    if using_static_cache:
         | 
| 1063 | 
            +
                        target_length = past_key_values.get_max_cache_shape()
         | 
| 1064 | 
            +
                    else:
         | 
| 1065 | 
            +
                        target_length = (
         | 
| 1066 | 
            +
                            attention_mask.shape[-1]
         | 
| 1067 | 
            +
                            if isinstance(attention_mask, torch.Tensor)
         | 
| 1068 | 
            +
                            else past_seen_tokens + sequence_length + 1
         | 
| 1069 | 
            +
                        )
         | 
| 1070 | 
            +
             | 
| 1071 | 
            +
                    if attention_mask is not None and attention_mask.dim() == 4:
         | 
| 1072 | 
            +
                        # in this case we assume that the mask comes already in inverted form and requires no inversion or slicing
         | 
| 1073 | 
            +
                        if attention_mask.max() != 0:
         | 
| 1074 | 
            +
                            raise ValueError("Custom 4D attention mask should be passed in inverted form with max==0`")
         | 
| 1075 | 
            +
                        causal_mask = attention_mask
         | 
| 1076 | 
            +
                    else:
         | 
| 1077 | 
            +
                        causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
         | 
| 1078 | 
            +
                        if sequence_length != 1:
         | 
| 1079 | 
            +
                            causal_mask = torch.triu(causal_mask, diagonal=1)
         | 
| 1080 | 
            +
                        causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
         | 
| 1081 | 
            +
                        causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
         | 
| 1082 | 
            +
                        if attention_mask is not None:
         | 
| 1083 | 
            +
                            causal_mask = causal_mask.clone()  # copy to contiguous memory for in-place edit
         | 
| 1084 | 
            +
                            mask_length = attention_mask.shape[-1]
         | 
| 1085 | 
            +
                            padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
         | 
| 1086 | 
            +
                            padding_mask = padding_mask == 0
         | 
| 1087 | 
            +
                            causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
         | 
| 1088 | 
            +
                                padding_mask, min_dtype
         | 
| 1089 | 
            +
                            )
         | 
| 1090 | 
            +
                    if (
         | 
| 1091 | 
            +
                        self.config.attn_implementation == "sdpa"
         | 
| 1092 | 
            +
                        and attention_mask is not None
         | 
| 1093 | 
            +
                        and attention_mask.device.type == "cuda"
         | 
| 1094 | 
            +
                        and not output_attentions
         | 
| 1095 | 
            +
                    ):
         | 
| 1096 | 
            +
                        # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
         | 
| 1097 | 
            +
                        # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
         | 
| 1098 | 
            +
                        # Details: https://github.com/pytorch/pytorch/issues/110213
         | 
| 1099 | 
            +
                        causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)  # pylint: disable=E1120
         | 
| 1100 | 
            +
             | 
| 1101 | 
            +
                    return causal_mask
         | 
| 1102 | 
            +
             | 
| 1103 | 
            +
             | 
| 1104 | 
            +
            # Modified from transformers.models.llama.modeling_llama.LlamaForCausalLM
         | 
| 1105 | 
            +
            class InternLM2ForCausalLM(InternLM2PreTrainedModel):
         | 
| 1106 | 
            +
                """Causal language model (CLM) for InternLM2."""
         | 
| 1107 | 
            +
             | 
| 1108 | 
            +
                _auto_class = "AutoModelForCausalLM"
         | 
| 1109 | 
            +
                _tied_weights_keys = ["output.weight"]
         | 
| 1110 | 
            +
             | 
| 1111 | 
            +
                def __init__(self, config):
         | 
| 1112 | 
            +
                    super().__init__(config)
         | 
| 1113 | 
            +
                    self.model = InternLM2Model(config)
         | 
| 1114 | 
            +
                    self.vocab_size = config.vocab_size
         | 
| 1115 | 
            +
                    self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
         | 
| 1116 | 
            +
             | 
| 1117 | 
            +
                    # Initialize weights and apply final processing
         | 
| 1118 | 
            +
                    self.post_init()
         | 
| 1119 | 
            +
             | 
| 1120 | 
            +
                def get_input_embeddings(self):
         | 
| 1121 | 
            +
                    return self.model.tok_embeddings
         | 
| 1122 | 
            +
             | 
| 1123 | 
            +
                def set_input_embeddings(self, value):
         | 
| 1124 | 
            +
                    self.model.tok_embeddings = value
         | 
| 1125 | 
            +
             | 
| 1126 | 
            +
                def get_output_embeddings(self):
         | 
| 1127 | 
            +
                    return self.output
         | 
| 1128 | 
            +
             | 
| 1129 | 
            +
                def set_output_embeddings(self, new_embeddings):
         | 
| 1130 | 
            +
                    self.output = new_embeddings
         | 
| 1131 | 
            +
             | 
| 1132 | 
            +
                def set_decoder(self, decoder):
         | 
| 1133 | 
            +
                    self.model = decoder
         | 
| 1134 | 
            +
             | 
| 1135 | 
            +
                def get_decoder(self):
         | 
| 1136 | 
            +
                    return self.model
         | 
| 1137 | 
            +
             | 
| 1138 | 
            +
                @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
         | 
| 1139 | 
            +
                @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
         | 
| 1140 | 
            +
                def forward(
         | 
| 1141 | 
            +
                    self,
         | 
| 1142 | 
            +
                    input_ids: torch.LongTensor = None,
         | 
| 1143 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 1144 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 1145 | 
            +
                    past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
         | 
| 1146 | 
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 1147 | 
            +
                    labels: Optional[torch.LongTensor] = None,
         | 
| 1148 | 
            +
                    use_cache: Optional[bool] = None,
         | 
| 1149 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 1150 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 1151 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 1152 | 
            +
                    cache_position: Optional[torch.LongTensor] = None,
         | 
| 1153 | 
            +
                ) -> Union[Tuple, CausalLMOutputWithPast]:
         | 
| 1154 | 
            +
                    r"""
         | 
| 1155 | 
            +
                    Args:
         | 
| 1156 | 
            +
                        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 1157 | 
            +
                            Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
         | 
| 1158 | 
            +
                            config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
         | 
| 1159 | 
            +
                            (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
         | 
| 1160 | 
            +
                    Returns:
         | 
| 1161 | 
            +
                    Example:
         | 
| 1162 | 
            +
                    ```python
         | 
| 1163 | 
            +
                    >>> from transformers import AutoTokenizer, InternLM2ForCausalLM
         | 
| 1164 | 
            +
                    >>> model = InternLM2ForCausalLM.from_pretrained("meta-InternLM2/InternLM2-2-7b-hf")
         | 
| 1165 | 
            +
                    >>> tokenizer = AutoTokenizer.from_pretrained("meta-InternLM2/InternLM2-2-7b-hf")
         | 
| 1166 | 
            +
                    >>> prompt = "Hey, are you conscious? Can you talk to me?"
         | 
| 1167 | 
            +
                    >>> inputs = tokenizer(prompt, return_tensors="pt")
         | 
| 1168 | 
            +
                    >>> # Generate
         | 
| 1169 | 
            +
                    >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
         | 
| 1170 | 
            +
                    >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
         | 
| 1171 | 
            +
                    "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
         | 
| 1172 | 
            +
                    ```"""
         | 
| 1173 | 
            +
             | 
| 1174 | 
            +
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         | 
| 1175 | 
            +
                    output_hidden_states = (
         | 
| 1176 | 
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         | 
| 1177 | 
            +
                    )
         | 
| 1178 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 1179 | 
            +
             | 
| 1180 | 
            +
                    # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
         | 
| 1181 | 
            +
                    outputs = self.model(
         | 
| 1182 | 
            +
                        input_ids=input_ids,
         | 
| 1183 | 
            +
                        attention_mask=attention_mask,
         | 
| 1184 | 
            +
                        position_ids=position_ids,
         | 
| 1185 | 
            +
                        past_key_values=past_key_values,
         | 
| 1186 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 1187 | 
            +
                        use_cache=use_cache,
         | 
| 1188 | 
            +
                        output_attentions=output_attentions,
         | 
| 1189 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 1190 | 
            +
                        return_dict=return_dict,
         | 
| 1191 | 
            +
                        cache_position=cache_position,
         | 
| 1192 | 
            +
                    )
         | 
| 1193 | 
            +
             | 
| 1194 | 
            +
                    hidden_states = outputs[0]
         | 
| 1195 | 
            +
                    if self.config.pretraining_tp > 1:
         | 
| 1196 | 
            +
                        output_slices = self.output.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
         | 
| 1197 | 
            +
                        logits = [
         | 
| 1198 | 
            +
                            F.linear(hidden_states, output_slices[i])  # pylint: disable=not-callable
         | 
| 1199 | 
            +
                            for i in range(self.config.pretraining_tp)
         | 
| 1200 | 
            +
                        ]
         | 
| 1201 | 
            +
                        logits = torch.cat(logits, dim=-1)
         | 
| 1202 | 
            +
                    else:
         | 
| 1203 | 
            +
                        logits = self.output(hidden_states)
         | 
| 1204 | 
            +
                    logits = logits.float()
         | 
| 1205 | 
            +
             | 
| 1206 | 
            +
                    loss = None
         | 
| 1207 | 
            +
                    if labels is not None:
         | 
| 1208 | 
            +
                        # Shift so that tokens < n predict n
         | 
| 1209 | 
            +
                        shift_logits = logits[..., :-1, :].contiguous()
         | 
| 1210 | 
            +
                        shift_labels = labels[..., 1:].contiguous()
         | 
| 1211 | 
            +
                        # Flatten the tokens
         | 
| 1212 | 
            +
                        loss_fct = CrossEntropyLoss()
         | 
| 1213 | 
            +
                        shift_logits = shift_logits.view(-1, self.config.vocab_size)
         | 
| 1214 | 
            +
                        shift_labels = shift_labels.view(-1)
         | 
| 1215 | 
            +
                        # Enable model parallelism
         | 
| 1216 | 
            +
                        shift_labels = shift_labels.to(shift_logits.device)
         | 
| 1217 | 
            +
                        loss = loss_fct(shift_logits, shift_labels)
         | 
| 1218 | 
            +
             | 
| 1219 | 
            +
                    if not return_dict:
         | 
| 1220 | 
            +
                        output = (logits,) + outputs[1:]
         | 
| 1221 | 
            +
                        return (loss,) + output if loss is not None else output
         | 
| 1222 | 
            +
             | 
| 1223 | 
            +
                    return CausalLMOutputWithPast(
         | 
| 1224 | 
            +
                        loss=loss,
         | 
| 1225 | 
            +
                        logits=logits,
         | 
| 1226 | 
            +
                        past_key_values=outputs.past_key_values,
         | 
| 1227 | 
            +
                        hidden_states=outputs.hidden_states,
         | 
| 1228 | 
            +
                        attentions=outputs.attentions,
         | 
| 1229 | 
            +
                    )
         | 
| 1230 | 
            +
             | 
| 1231 | 
            +
                def prepare_inputs_for_generation(
         | 
| 1232 | 
            +
                    self,
         | 
| 1233 | 
            +
                    input_ids,
         | 
| 1234 | 
            +
                    past_key_values=None,
         | 
| 1235 | 
            +
                    attention_mask=None,
         | 
| 1236 | 
            +
                    inputs_embeds=None,
         | 
| 1237 | 
            +
                    cache_position=None,
         | 
| 1238 | 
            +
                    use_cache=True,
         | 
| 1239 | 
            +
                    **kwargs,
         | 
| 1240 | 
            +
                ):
         | 
| 1241 | 
            +
                    past_length = 0
         | 
| 1242 | 
            +
                    if past_key_values is not None:
         | 
| 1243 | 
            +
                        if isinstance(past_key_values, Cache):
         | 
| 1244 | 
            +
                            past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length()
         | 
| 1245 | 
            +
                            max_cache_length = (
         | 
| 1246 | 
            +
                                torch.tensor(past_key_values.get_max_cache_shape(), device=input_ids.device)
         | 
| 1247 | 
            +
                                if past_key_values.get_max_cache_shape() is not None
         | 
| 1248 | 
            +
                                else None
         | 
| 1249 | 
            +
                            )
         | 
| 1250 | 
            +
                            cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length)
         | 
| 1251 | 
            +
                        # TODO joao: remove this `else` after `generate` prioritizes `Cache` objects
         | 
| 1252 | 
            +
                        else:
         | 
| 1253 | 
            +
                            cache_length = past_length = past_key_values[0][0].shape[2]
         | 
| 1254 | 
            +
                            max_cache_length = None
         | 
| 1255 | 
            +
             | 
| 1256 | 
            +
                        # Keep only the unprocessed tokens:
         | 
| 1257 | 
            +
                        # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
         | 
| 1258 | 
            +
                        # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as input)
         | 
| 1259 | 
            +
                        if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
         | 
| 1260 | 
            +
                            input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
         | 
| 1261 | 
            +
                        # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
         | 
| 1262 | 
            +
                        # input_ids based on the past_length.
         | 
| 1263 | 
            +
                        elif past_length < input_ids.shape[1]:
         | 
| 1264 | 
            +
                            input_ids = input_ids[:, past_length:]
         | 
| 1265 | 
            +
                        # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
         | 
| 1266 | 
            +
             | 
| 1267 | 
            +
                        # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
         | 
| 1268 | 
            +
                        if (
         | 
| 1269 | 
            +
                            max_cache_length is not None
         | 
| 1270 | 
            +
                            and attention_mask is not None
         | 
| 1271 | 
            +
                            and cache_length + input_ids.shape[1] > max_cache_length
         | 
| 1272 | 
            +
                        ):
         | 
| 1273 | 
            +
                            attention_mask = attention_mask[:, -max_cache_length:]  # pylint: disable=E1130
         | 
| 1274 | 
            +
             | 
| 1275 | 
            +
                    position_ids = kwargs.get("position_ids", None)
         | 
| 1276 | 
            +
                    if attention_mask is not None and position_ids is None:
         | 
| 1277 | 
            +
                        # create position_ids on the fly for batch generation
         | 
| 1278 | 
            +
                        position_ids = attention_mask.long().cumsum(-1) - 1
         | 
| 1279 | 
            +
                        position_ids.masked_fill_(attention_mask == 0, 1)
         | 
| 1280 | 
            +
                        if past_key_values:
         | 
| 1281 | 
            +
                            position_ids = position_ids[:, -input_ids.shape[1] :]
         | 
| 1282 | 
            +
             | 
| 1283 | 
            +
                    # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
         | 
| 1284 | 
            +
                    if inputs_embeds is not None and past_key_values is None:
         | 
| 1285 | 
            +
                        model_inputs = {"inputs_embeds": inputs_embeds}
         | 
| 1286 | 
            +
                    else:
         | 
| 1287 | 
            +
                        # The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
         | 
| 1288 | 
            +
                        # recompiles graphs as the stride of the inputs is a guard.
         | 
| 1289 | 
            +
                        # Ref: https://github.com/huggingface/transformers/pull/29114
         | 
| 1290 | 
            +
                        # TODO: use `next_tokens` directly instead.
         | 
| 1291 | 
            +
                        model_inputs = {"input_ids": input_ids.contiguous()}
         | 
| 1292 | 
            +
             | 
| 1293 | 
            +
                    input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
         | 
| 1294 | 
            +
                    if cache_position is None:
         | 
| 1295 | 
            +
                        cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device)
         | 
| 1296 | 
            +
                    elif use_cache:
         | 
| 1297 | 
            +
                        cache_position = cache_position[-input_length:]
         | 
| 1298 | 
            +
             | 
| 1299 | 
            +
                    model_inputs.update(
         | 
| 1300 | 
            +
                        {
         | 
| 1301 | 
            +
                            "position_ids": position_ids,
         | 
| 1302 | 
            +
                            "cache_position": cache_position,
         | 
| 1303 | 
            +
                            "past_key_values": past_key_values,
         | 
| 1304 | 
            +
                            "use_cache": use_cache,
         | 
| 1305 | 
            +
                            "attention_mask": attention_mask,
         | 
| 1306 | 
            +
                        }
         | 
| 1307 | 
            +
                    )
         | 
| 1308 | 
            +
                    return model_inputs
         | 
| 1309 | 
            +
             | 
| 1310 | 
            +
                @staticmethod
         | 
| 1311 | 
            +
                def _reorder_cache(past_key_values, beam_idx):
         | 
| 1312 | 
            +
                    reordered_past = ()
         | 
| 1313 | 
            +
                    for layer_past in past_key_values:
         | 
| 1314 | 
            +
                        reordered_past += (
         | 
| 1315 | 
            +
                            tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
         | 
| 1316 | 
            +
                        )
         | 
| 1317 | 
            +
                    return reordered_past
         | 
| 1318 | 
            +
             | 
| 1319 | 
            +
                def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, meta_instruction=""):
         | 
| 1320 | 
            +
                    if history is None:
         | 
| 1321 | 
            +
                        history = []
         | 
| 1322 | 
            +
                    if tokenizer.add_bos_token:
         | 
| 1323 | 
            +
                        prompt = ""
         | 
| 1324 | 
            +
                    else:
         | 
| 1325 | 
            +
                        prompt = tokenizer.bos_token
         | 
| 1326 | 
            +
                    if meta_instruction:
         | 
| 1327 | 
            +
                        prompt += f"""<|im_start|>system\n{meta_instruction}<|im_end|>\n"""
         | 
| 1328 | 
            +
                    for record in history:
         | 
| 1329 | 
            +
                        prompt += f"""<|im_start|>user\n{record[0]}<|im_end|>\n<|im_start|>assistant\n{record[1]}<|im_end|>\n"""
         | 
| 1330 | 
            +
                    prompt += f"""<|im_start|>user\n{query}<|im_end|>\n<|im_start|>assistant\n"""
         | 
| 1331 | 
            +
                    return tokenizer([prompt], return_tensors="pt")
         | 
| 1332 | 
            +
             | 
| 1333 | 
            +
                @torch.no_grad()
         | 
| 1334 | 
            +
                def chat(
         | 
| 1335 | 
            +
                    self,
         | 
| 1336 | 
            +
                    tokenizer,
         | 
| 1337 | 
            +
                    query: str,
         | 
| 1338 | 
            +
                    history: Optional[List[Tuple[str, str]]] = None,
         | 
| 1339 | 
            +
                    streamer: Optional[BaseStreamer] = None,
         | 
| 1340 | 
            +
                    max_new_tokens: int = 1024,
         | 
| 1341 | 
            +
                    do_sample: bool = True,
         | 
| 1342 | 
            +
                    temperature: float = 0.8,
         | 
| 1343 | 
            +
                    top_p: float = 0.8,
         | 
| 1344 | 
            +
                    meta_instruction: str = "You are an AI assistant whose name is InternLM (书生·浦语).\n"
         | 
| 1345 | 
            +
                    "- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory "
         | 
| 1346 | 
            +
                    "(上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n"
         | 
| 1347 | 
            +
                    "- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such "
         | 
| 1348 | 
            +
                    "as English and 中文.",
         | 
| 1349 | 
            +
                    **kwargs,
         | 
| 1350 | 
            +
                ):
         | 
| 1351 | 
            +
                    if history is None:
         | 
| 1352 | 
            +
                        history = []
         | 
| 1353 | 
            +
                    inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
         | 
| 1354 | 
            +
                    inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
         | 
| 1355 | 
            +
                    # also add end-of-assistant token in eos token id to avoid unnecessary generation
         | 
| 1356 | 
            +
                    eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids(["<|im_end|>"])[0]]
         | 
| 1357 | 
            +
                    outputs = self.generate(
         | 
| 1358 | 
            +
                        **inputs,
         | 
| 1359 | 
            +
                        streamer=streamer,
         | 
| 1360 | 
            +
                        max_new_tokens=max_new_tokens,
         | 
| 1361 | 
            +
                        do_sample=do_sample,
         | 
| 1362 | 
            +
                        temperature=temperature,
         | 
| 1363 | 
            +
                        top_p=top_p,
         | 
| 1364 | 
            +
                        eos_token_id=eos_token_id,
         | 
| 1365 | 
            +
                        **kwargs,
         | 
| 1366 | 
            +
                    )
         | 
| 1367 | 
            +
                    outputs = outputs[0].cpu().tolist()[len(inputs["input_ids"][0]) :]
         | 
| 1368 | 
            +
                    response = tokenizer.decode(outputs, skip_special_tokens=True)
         | 
| 1369 | 
            +
                    response = response.split("<|im_end|>")[0]
         | 
| 1370 | 
            +
                    history = history + [(query, response)]
         | 
| 1371 | 
            +
                    return response, history
         | 
| 1372 | 
            +
             | 
| 1373 | 
            +
                @torch.no_grad()
         | 
| 1374 | 
            +
                def stream_chat(
         | 
| 1375 | 
            +
                    self,
         | 
| 1376 | 
            +
                    tokenizer,
         | 
| 1377 | 
            +
                    query: str,
         | 
| 1378 | 
            +
                    history: List[Tuple[str, str]] = None,
         | 
| 1379 | 
            +
                    max_new_tokens: int = 1024,
         | 
| 1380 | 
            +
                    do_sample: bool = True,
         | 
| 1381 | 
            +
                    temperature: float = 0.8,
         | 
| 1382 | 
            +
                    top_p: float = 0.8,
         | 
| 1383 | 
            +
                    **kwargs,
         | 
| 1384 | 
            +
                ):
         | 
| 1385 | 
            +
                    if history is None:
         | 
| 1386 | 
            +
                        history = []
         | 
| 1387 | 
            +
                    """
         | 
| 1388 | 
            +
                    Return a generator in format: (response, history)
         | 
| 1389 | 
            +
                    Eg.
         | 
| 1390 | 
            +
                    ('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')])
         | 
| 1391 | 
            +
                    ('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')])
         | 
| 1392 | 
            +
                    """
         | 
| 1393 | 
            +
                    if BaseStreamer is None:
         | 
| 1394 | 
            +
                        raise ModuleNotFoundError(
         | 
| 1395 | 
            +
                            "The version of `transformers` is too low. Please make sure "
         | 
| 1396 | 
            +
                            "that you have installed `transformers>=4.28.0`."
         | 
| 1397 | 
            +
                        )
         | 
| 1398 | 
            +
             | 
| 1399 | 
            +
                    response_queue = queue.Queue(maxsize=20)
         | 
| 1400 | 
            +
             | 
| 1401 | 
            +
                    class ChatStreamer(BaseStreamer):
         | 
| 1402 | 
            +
                        """
         | 
| 1403 | 
            +
                        Streamer used in generate to print words one by one.
         | 
| 1404 | 
            +
                        """
         | 
| 1405 | 
            +
             | 
| 1406 | 
            +
                        def __init__(self, tokenizer) -> None:
         | 
| 1407 | 
            +
                            super().__init__()
         | 
| 1408 | 
            +
                            self.tokenizer = tokenizer
         | 
| 1409 | 
            +
                            self.queue = response_queue
         | 
| 1410 | 
            +
                            self.query = query
         | 
| 1411 | 
            +
                            self.history = history
         | 
| 1412 | 
            +
                            self.response = ""
         | 
| 1413 | 
            +
                            self.cache = []
         | 
| 1414 | 
            +
                            self.received_inputs = False
         | 
| 1415 | 
            +
                            self.queue.put((self.response, history + [(self.query, self.response)]))
         | 
| 1416 | 
            +
             | 
| 1417 | 
            +
                        def put(self, value):
         | 
| 1418 | 
            +
                            if len(value.shape) > 1 and value.shape[0] > 1:
         | 
| 1419 | 
            +
                                raise ValueError("ChatStreamer only supports batch size 1")
         | 
| 1420 | 
            +
                            elif len(value.shape) > 1:
         | 
| 1421 | 
            +
                                value = value[0]
         | 
| 1422 | 
            +
             | 
| 1423 | 
            +
                            if not self.received_inputs:
         | 
| 1424 | 
            +
                                # The first received value is input_ids, ignore here
         | 
| 1425 | 
            +
                                self.received_inputs = True
         | 
| 1426 | 
            +
                                return
         | 
| 1427 | 
            +
             | 
| 1428 | 
            +
                            self.cache.extend(value.tolist())
         | 
| 1429 | 
            +
                            token = self.tokenizer.decode(self.cache, skip_special_tokens=True)
         | 
| 1430 | 
            +
                            if token.strip() != "<|im_end|>":
         | 
| 1431 | 
            +
                                self.response = self.response + token
         | 
| 1432 | 
            +
                                history = self.history + [(self.query, self.response)]
         | 
| 1433 | 
            +
                                self.queue.put((self.response, history))
         | 
| 1434 | 
            +
                                self.cache = []
         | 
| 1435 | 
            +
                            else:
         | 
| 1436 | 
            +
                                self.end()
         | 
| 1437 | 
            +
             | 
| 1438 | 
            +
                        def end(self):
         | 
| 1439 | 
            +
                            self.queue.put(None)
         | 
| 1440 | 
            +
             | 
| 1441 | 
            +
                    def stream_producer():
         | 
| 1442 | 
            +
                        return self.chat(
         | 
| 1443 | 
            +
                            tokenizer=tokenizer,
         | 
| 1444 | 
            +
                            query=query,
         | 
| 1445 | 
            +
                            streamer=ChatStreamer(tokenizer=tokenizer),
         | 
| 1446 | 
            +
                            history=history,
         | 
| 1447 | 
            +
                            max_new_tokens=max_new_tokens,
         | 
| 1448 | 
            +
                            do_sample=do_sample,
         | 
| 1449 | 
            +
                            temperature=temperature,
         | 
| 1450 | 
            +
                            top_p=top_p,
         | 
| 1451 | 
            +
                            **kwargs,
         | 
| 1452 | 
            +
                        )
         | 
| 1453 | 
            +
             | 
| 1454 | 
            +
                    def consumer():
         | 
| 1455 | 
            +
                        producer = threading.Thread(target=stream_producer)
         | 
| 1456 | 
            +
                        producer.start()
         | 
| 1457 | 
            +
                        while True:
         | 
| 1458 | 
            +
                            res = response_queue.get()
         | 
| 1459 | 
            +
                            if res is None:
         | 
| 1460 | 
            +
                                return
         | 
| 1461 | 
            +
                            yield res
         | 
| 1462 | 
            +
             | 
| 1463 | 
            +
                    return consumer()
         | 
| 1464 | 
            +
             | 
| 1465 | 
            +
             | 
| 1466 | 
            +
            # Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->InternLM2
         | 
| 1467 | 
            +
            @add_start_docstrings(
         | 
| 1468 | 
            +
                """
         | 
| 1469 | 
            +
                The InternLM2 Model transformer with a sequence classification head on top (linear layer).
         | 
| 1470 | 
            +
                [`InternLM2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
         | 
| 1471 | 
            +
                (e.g. GPT-2) do.
         | 
| 1472 | 
            +
                Since it does classification on the last token, it requires to know the position of the last token. If a
         | 
| 1473 | 
            +
                `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
         | 
| 1474 | 
            +
                no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
         | 
| 1475 | 
            +
                padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
         | 
| 1476 | 
            +
                each row of the batch).
         | 
| 1477 | 
            +
                """,
         | 
| 1478 | 
            +
                InternLM2_START_DOCSTRING,
         | 
| 1479 | 
            +
            )
         | 
| 1480 | 
            +
            class InternLM2ForSequenceClassification(InternLM2PreTrainedModel):
         | 
| 1481 | 
            +
                """Sequence Classification Head for InternLM2 Model."""
         | 
| 1482 | 
            +
             | 
| 1483 | 
            +
                def __init__(self, config):
         | 
| 1484 | 
            +
                    super().__init__(config)
         | 
| 1485 | 
            +
                    self.num_labels = config.num_labels
         | 
| 1486 | 
            +
                    self.model = InternLM2Model(config)
         | 
| 1487 | 
            +
                    self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
         | 
| 1488 | 
            +
             | 
| 1489 | 
            +
                    # Initialize weights and apply final processing
         | 
| 1490 | 
            +
                    self.post_init()
         | 
| 1491 | 
            +
             | 
| 1492 | 
            +
                def get_input_embeddings(self):
         | 
| 1493 | 
            +
                    return self.model.tok_embeddings
         | 
| 1494 | 
            +
             | 
| 1495 | 
            +
                def set_input_embeddings(self, value):
         | 
| 1496 | 
            +
                    self.model.tok_embeddings = value
         | 
| 1497 | 
            +
             | 
| 1498 | 
            +
                @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
         | 
| 1499 | 
            +
                def forward(
         | 
| 1500 | 
            +
                    self,
         | 
| 1501 | 
            +
                    input_ids: torch.LongTensor = None,
         | 
| 1502 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 1503 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 1504 | 
            +
                    past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
         | 
| 1505 | 
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 1506 | 
            +
                    labels: Optional[torch.LongTensor] = None,
         | 
| 1507 | 
            +
                    use_cache: Optional[bool] = None,
         | 
| 1508 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 1509 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 1510 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 1511 | 
            +
                ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
         | 
| 1512 | 
            +
                    r"""
         | 
| 1513 | 
            +
                    labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
         | 
| 1514 | 
            +
                        Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
         | 
| 1515 | 
            +
                        config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
         | 
| 1516 | 
            +
                        `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
         | 
| 1517 | 
            +
                    """
         | 
| 1518 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 1519 | 
            +
             | 
| 1520 | 
            +
                    transformer_outputs = self.model(
         | 
| 1521 | 
            +
                        input_ids,
         | 
| 1522 | 
            +
                        attention_mask=attention_mask,
         | 
| 1523 | 
            +
                        position_ids=position_ids,
         | 
| 1524 | 
            +
                        past_key_values=past_key_values,
         | 
| 1525 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 1526 | 
            +
                        use_cache=use_cache,
         | 
| 1527 | 
            +
                        output_attentions=output_attentions,
         | 
| 1528 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 1529 | 
            +
                        return_dict=return_dict,
         | 
| 1530 | 
            +
                    )
         | 
| 1531 | 
            +
                    hidden_states = transformer_outputs[0]
         | 
| 1532 | 
            +
                    logits = self.score(hidden_states)
         | 
| 1533 | 
            +
             | 
| 1534 | 
            +
                    if input_ids is not None:
         | 
| 1535 | 
            +
                        batch_size = input_ids.shape[0]
         | 
| 1536 | 
            +
                    else:
         | 
| 1537 | 
            +
                        batch_size = inputs_embeds.shape[0]
         | 
| 1538 | 
            +
             | 
| 1539 | 
            +
                    if self.config.pad_token_id is None and batch_size != 1:
         | 
| 1540 | 
            +
                        raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
         | 
| 1541 | 
            +
                    if self.config.pad_token_id is None:
         | 
| 1542 | 
            +
                        sequence_lengths = -1
         | 
| 1543 | 
            +
                    else:
         | 
| 1544 | 
            +
                        if input_ids is not None:
         | 
| 1545 | 
            +
                            # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
         | 
| 1546 | 
            +
                            sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
         | 
| 1547 | 
            +
                            sequence_lengths = sequence_lengths % input_ids.shape[-1]
         | 
| 1548 | 
            +
                            sequence_lengths = sequence_lengths.to(logits.device)
         | 
| 1549 | 
            +
                        else:
         | 
| 1550 | 
            +
                            sequence_lengths = -1
         | 
| 1551 | 
            +
             | 
| 1552 | 
            +
                    pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
         | 
| 1553 | 
            +
             | 
| 1554 | 
            +
                    loss = None
         | 
| 1555 | 
            +
                    if labels is not None:
         | 
| 1556 | 
            +
                        labels = labels.to(logits.device)
         | 
| 1557 | 
            +
                        if self.config.problem_type is None:
         | 
| 1558 | 
            +
                            if self.num_labels == 1:
         | 
| 1559 | 
            +
                                self.config.problem_type = "regression"
         | 
| 1560 | 
            +
                            elif self.num_labels > 1 and (labels.dtype in (torch.long, torch.int)):
         | 
| 1561 | 
            +
                                self.config.problem_type = "single_label_classification"
         | 
| 1562 | 
            +
                            else:
         | 
| 1563 | 
            +
                                self.config.problem_type = "multi_label_classification"
         | 
| 1564 | 
            +
             | 
| 1565 | 
            +
                        if self.config.problem_type == "regression":
         | 
| 1566 | 
            +
                            loss_fct = MSELoss()
         | 
| 1567 | 
            +
                            if self.num_labels == 1:
         | 
| 1568 | 
            +
                                loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
         | 
| 1569 | 
            +
                            else:
         | 
| 1570 | 
            +
                                loss = loss_fct(pooled_logits, labels)
         | 
| 1571 | 
            +
                        elif self.config.problem_type == "single_label_classification":
         | 
| 1572 | 
            +
                            loss_fct = CrossEntropyLoss()
         | 
| 1573 | 
            +
                            loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
         | 
| 1574 | 
            +
                        elif self.config.problem_type == "multi_label_classification":
         | 
| 1575 | 
            +
                            loss_fct = BCEWithLogitsLoss()
         | 
| 1576 | 
            +
                            loss = loss_fct(pooled_logits, labels)
         | 
| 1577 | 
            +
                    if not return_dict:
         | 
| 1578 | 
            +
                        output = (pooled_logits,) + transformer_outputs[1:]
         | 
| 1579 | 
            +
                        return ((loss,) + output) if loss is not None else output
         | 
| 1580 | 
            +
             | 
| 1581 | 
            +
                    return SequenceClassifierOutputWithPast(
         | 
| 1582 | 
            +
                        loss=loss,
         | 
| 1583 | 
            +
                        logits=pooled_logits,
         | 
| 1584 | 
            +
                        past_key_values=transformer_outputs.past_key_values,
         | 
| 1585 | 
            +
                        hidden_states=transformer_outputs.hidden_states,
         | 
| 1586 | 
            +
                        attentions=transformer_outputs.attentions,
         | 
| 1587 | 
            +
                    )
         | 
| 1588 | 
            +
             | 
| 1589 | 
            +
             | 
| 1590 | 
            +
            # Copied from transformers.models.llama.modeling_llama.LlamaForQuestionAnswering with Llama->InternLM2
         | 
| 1591 | 
            +
            @add_start_docstrings(
         | 
| 1592 | 
            +
                """
         | 
| 1593 | 
            +
            The InternLM2 Model transformer with a span classification head on top for extractive question-answering tasks like
         | 
| 1594 | 
            +
            SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
         | 
| 1595 | 
            +
                """,
         | 
| 1596 | 
            +
                InternLM2_START_DOCSTRING,
         | 
| 1597 | 
            +
            )
         | 
| 1598 | 
            +
            class InternLM2ForQuestionAnswering(InternLM2PreTrainedModel):
         | 
| 1599 | 
            +
                """Question Answering model for InternLM2."""
         | 
| 1600 | 
            +
             | 
| 1601 | 
            +
                base_model_prefix = "transformer"
         | 
| 1602 | 
            +
             | 
| 1603 | 
            +
                def __init__(self, config):
         | 
| 1604 | 
            +
                    super().__init__(config)
         | 
| 1605 | 
            +
                    self.transformer = InternLM2Model(config)
         | 
| 1606 | 
            +
                    self.qa_outputs = nn.Linear(config.hidden_size, 2)
         | 
| 1607 | 
            +
             | 
| 1608 | 
            +
                    # Initialize weights and apply final processing
         | 
| 1609 | 
            +
                    self.post_init()
         | 
| 1610 | 
            +
             | 
| 1611 | 
            +
                def get_input_embeddings(self):
         | 
| 1612 | 
            +
                    return self.transformer.tok_embeddings
         | 
| 1613 | 
            +
             | 
| 1614 | 
            +
                def set_input_embeddings(self, value):
         | 
| 1615 | 
            +
                    self.transformer.tok_embeddings = value
         | 
| 1616 | 
            +
             | 
| 1617 | 
            +
                @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
         | 
| 1618 | 
            +
                def forward(
         | 
| 1619 | 
            +
                    self,
         | 
| 1620 | 
            +
                    input_ids: Optional[torch.LongTensor] = None,
         | 
| 1621 | 
            +
                    attention_mask: Optional[torch.FloatTensor] = None,
         | 
| 1622 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 1623 | 
            +
                    past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
         | 
| 1624 | 
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 1625 | 
            +
                    start_positions: Optional[torch.LongTensor] = None,
         | 
| 1626 | 
            +
                    end_positions: Optional[torch.LongTensor] = None,
         | 
| 1627 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 1628 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 1629 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 1630 | 
            +
                ) -> Union[Tuple, QuestionAnsweringModelOutput]:
         | 
| 1631 | 
            +
                    r"""
         | 
| 1632 | 
            +
                    start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
         | 
| 1633 | 
            +
                        Labels for position (index) of the start of the labelled span for computing the token classification loss.
         | 
| 1634 | 
            +
                        Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
         | 
| 1635 | 
            +
                        are not taken into account for computing the loss.
         | 
| 1636 | 
            +
                    end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
         | 
| 1637 | 
            +
                        Labels for position (index) of the end of the labelled span for computing the token classification loss.
         | 
| 1638 | 
            +
                        Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
         | 
| 1639 | 
            +
                        are not taken into account for computing the loss.
         | 
| 1640 | 
            +
                    """
         | 
| 1641 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 1642 | 
            +
             | 
| 1643 | 
            +
                    outputs = self.transformer(
         | 
| 1644 | 
            +
                        input_ids,
         | 
| 1645 | 
            +
                        attention_mask=attention_mask,
         | 
| 1646 | 
            +
                        position_ids=position_ids,
         | 
| 1647 | 
            +
                        past_key_values=past_key_values,
         | 
| 1648 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 1649 | 
            +
                        output_attentions=output_attentions,
         | 
| 1650 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 1651 | 
            +
                        return_dict=return_dict,
         | 
| 1652 | 
            +
                    )
         | 
| 1653 | 
            +
             | 
| 1654 | 
            +
                    sequence_output = outputs[0]
         | 
| 1655 | 
            +
             | 
| 1656 | 
            +
                    logits = self.qa_outputs(sequence_output)
         | 
| 1657 | 
            +
                    start_logits, end_logits = logits.split(1, dim=-1)
         | 
| 1658 | 
            +
                    start_logits = start_logits.squeeze(-1).contiguous()
         | 
| 1659 | 
            +
                    end_logits = end_logits.squeeze(-1).contiguous()
         | 
| 1660 | 
            +
             | 
| 1661 | 
            +
                    total_loss = None
         | 
| 1662 | 
            +
                    if start_positions is not None and end_positions is not None:
         | 
| 1663 | 
            +
                        # If we are on multi-GPU, split add a dimension
         | 
| 1664 | 
            +
                        if len(start_positions.size()) > 1:
         | 
| 1665 | 
            +
                            start_positions = start_positions.squeeze(-1).to(start_logits.device)
         | 
| 1666 | 
            +
                        if len(end_positions.size()) > 1:
         | 
| 1667 | 
            +
                            end_positions = end_positions.squeeze(-1).to(end_logits.device)
         | 
| 1668 | 
            +
                        # sometimes the start/end positions are outside our model inputs, we ignore these terms
         | 
| 1669 | 
            +
                        ignored_index = start_logits.size(1)
         | 
| 1670 | 
            +
                        start_positions = start_positions.clamp(0, ignored_index)
         | 
| 1671 | 
            +
                        end_positions = end_positions.clamp(0, ignored_index)
         | 
| 1672 | 
            +
             | 
| 1673 | 
            +
                        loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
         | 
| 1674 | 
            +
                        start_loss = loss_fct(start_logits, start_positions)
         | 
| 1675 | 
            +
                        end_loss = loss_fct(end_logits, end_positions)
         | 
| 1676 | 
            +
                        total_loss = (start_loss + end_loss) / 2
         | 
| 1677 | 
            +
             | 
| 1678 | 
            +
                    if not return_dict:
         | 
| 1679 | 
            +
                        output = (start_logits, end_logits) + outputs[2:]
         | 
| 1680 | 
            +
                        return ((total_loss,) + output) if total_loss is not None else output
         | 
| 1681 | 
            +
             | 
| 1682 | 
            +
                    return QuestionAnsweringModelOutput(
         | 
| 1683 | 
            +
                        loss=total_loss,
         | 
| 1684 | 
            +
                        start_logits=start_logits,
         | 
| 1685 | 
            +
                        end_logits=end_logits,
         | 
| 1686 | 
            +
                        hidden_states=outputs.hidden_states,
         | 
| 1687 | 
            +
                        attentions=outputs.attentions,
         | 
| 1688 | 
            +
                    )
         | 
| 1689 | 
            +
             | 
| 1690 | 
            +
             | 
| 1691 | 
            +
            # Copied from transformers.models.llama.modeling_llama.LlamaForTokenClassification with Llama->InternLM2
         | 
| 1692 | 
            +
            @add_start_docstrings(
         | 
| 1693 | 
            +
                """
         | 
| 1694 | 
            +
                The InternLM2 Model transformer with a token classification head on top (a linear layer on top of the hidden-states
         | 
| 1695 | 
            +
                output) e.g. for Named-Entity-Recognition (NER) tasks.
         | 
| 1696 | 
            +
                """,
         | 
| 1697 | 
            +
                InternLM2_START_DOCSTRING,
         | 
| 1698 | 
            +
            )
         | 
| 1699 | 
            +
            class InternLM2ForTokenClassification(InternLM2PreTrainedModel):
         | 
| 1700 | 
            +
                """Token classification model for InternLM2."""
         | 
| 1701 | 
            +
             | 
| 1702 | 
            +
                def __init__(self, config):
         | 
| 1703 | 
            +
                    super().__init__(config)
         | 
| 1704 | 
            +
                    self.num_labels = config.num_labels
         | 
| 1705 | 
            +
                    self.model = InternLM2Model(config)
         | 
| 1706 | 
            +
                    if getattr(config, "classifier_dropout", None) is not None:
         | 
| 1707 | 
            +
                        classifier_dropout = config.classifier_dropout
         | 
| 1708 | 
            +
                    elif getattr(config, "hidden_dropout", None) is not None:
         | 
| 1709 | 
            +
                        classifier_dropout = config.hidden_dropout
         | 
| 1710 | 
            +
                    else:
         | 
| 1711 | 
            +
                        classifier_dropout = 0.1
         | 
| 1712 | 
            +
                    self.dropout = nn.Dropout(classifier_dropout)
         | 
| 1713 | 
            +
                    self.score = nn.Linear(config.hidden_size, config.num_labels)
         | 
| 1714 | 
            +
             | 
| 1715 | 
            +
                    # Initialize weights and apply final processing
         | 
| 1716 | 
            +
                    self.post_init()
         | 
| 1717 | 
            +
             | 
| 1718 | 
            +
                def get_input_embeddings(self):
         | 
| 1719 | 
            +
                    return self.model.tok_embeddings
         | 
| 1720 | 
            +
             | 
| 1721 | 
            +
                def set_input_embeddings(self, value):
         | 
| 1722 | 
            +
                    self.model.tok_embeddings = value
         | 
| 1723 | 
            +
             | 
| 1724 | 
            +
                @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
         | 
| 1725 | 
            +
                def forward(
         | 
| 1726 | 
            +
                    self,
         | 
| 1727 | 
            +
                    input_ids: torch.LongTensor = None,
         | 
| 1728 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 1729 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 1730 | 
            +
                    past_key_values: Optional[List[torch.FloatTensor]] = None,
         | 
| 1731 | 
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 1732 | 
            +
                    labels: Optional[torch.LongTensor] = None,
         | 
| 1733 | 
            +
                    use_cache: Optional[bool] = None,
         | 
| 1734 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 1735 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 1736 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 1737 | 
            +
                ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
         | 
| 1738 | 
            +
                    r"""
         | 
| 1739 | 
            +
                    labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
         | 
| 1740 | 
            +
                        Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
         | 
| 1741 | 
            +
                        config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
         | 
| 1742 | 
            +
                        `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
         | 
| 1743 | 
            +
                    """
         | 
| 1744 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 1745 | 
            +
             | 
| 1746 | 
            +
                    outputs = self.model(
         | 
| 1747 | 
            +
                        input_ids,
         | 
| 1748 | 
            +
                        attention_mask=attention_mask,
         | 
| 1749 | 
            +
                        position_ids=position_ids,
         | 
| 1750 | 
            +
                        past_key_values=past_key_values,
         | 
| 1751 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 1752 | 
            +
                        use_cache=use_cache,
         | 
| 1753 | 
            +
                        output_attentions=output_attentions,
         | 
| 1754 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 1755 | 
            +
                        return_dict=return_dict,
         | 
| 1756 | 
            +
                    )
         | 
| 1757 | 
            +
                    sequence_output = outputs[0]
         | 
| 1758 | 
            +
                    sequence_output = self.dropout(sequence_output)
         | 
| 1759 | 
            +
                    logits = self.score(sequence_output)
         | 
| 1760 | 
            +
             | 
| 1761 | 
            +
                    loss = None
         | 
| 1762 | 
            +
                    if labels is not None:
         | 
| 1763 | 
            +
                        loss_fct = CrossEntropyLoss()
         | 
| 1764 | 
            +
                        loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
         | 
| 1765 | 
            +
             | 
| 1766 | 
            +
                    if not return_dict:
         | 
| 1767 | 
            +
                        output = (logits,) + outputs[2:]
         | 
| 1768 | 
            +
                        return ((loss,) + output) if loss is not None else output
         | 
| 1769 | 
            +
             | 
| 1770 | 
            +
                    return TokenClassifierOutput(
         | 
| 1771 | 
            +
                        loss=loss,
         | 
| 1772 | 
            +
                        logits=logits,
         | 
| 1773 | 
            +
                        hidden_states=outputs.hidden_states,
         | 
| 1774 | 
            +
                        attentions=outputs.attentions,
         | 
| 1775 | 
            +
                    )
         | 
| 1776 | 
            +
             | 
| 1777 | 
            +
             | 
| 1778 | 
            +
            # Modified from transformers.models.llama.modeling_llama.LlamaForTokenClassification
         | 
| 1779 | 
            +
            class InternLM2ForRewardModel(InternLM2PreTrainedModel):
         | 
| 1780 | 
            +
             | 
| 1781 | 
            +
                _auto_class = "AutoModel"
         | 
| 1782 | 
            +
                _tied_weights_keys = ["v_head.weight"]
         | 
| 1783 | 
            +
             | 
| 1784 | 
            +
                def __init__(self, config):
         | 
| 1785 | 
            +
                    super().__init__(config)
         | 
| 1786 | 
            +
                    self.model = InternLM2Model(config)
         | 
| 1787 | 
            +
                    self.vocab_size = config.vocab_size
         | 
| 1788 | 
            +
                    self.v_head = nn.Linear(config.hidden_size, 1, bias=False)
         | 
| 1789 | 
            +
                    self.reward_token_id = config.reward_token_id
         | 
| 1790 | 
            +
             | 
| 1791 | 
            +
                    # Initialize weights and apply final processing
         | 
| 1792 | 
            +
                    self.post_init()
         | 
| 1793 | 
            +
             | 
| 1794 | 
            +
                def get_input_embeddings(self):
         | 
| 1795 | 
            +
                    return self.model.tok_embeddings
         | 
| 1796 | 
            +
             | 
| 1797 | 
            +
                def set_input_embeddings(self, value):
         | 
| 1798 | 
            +
                    self.model.tok_embeddings = value
         | 
| 1799 | 
            +
             | 
| 1800 | 
            +
                def get_output_embeddings(self):
         | 
| 1801 | 
            +
                    return self.v_head
         | 
| 1802 | 
            +
             | 
| 1803 | 
            +
                def set_output_embeddings(self, new_embeddings):
         | 
| 1804 | 
            +
                    self.v_head = new_embeddings
         | 
| 1805 | 
            +
             | 
| 1806 | 
            +
                def set_decoder(self, decoder):
         | 
| 1807 | 
            +
                    self.model = decoder
         | 
| 1808 | 
            +
             | 
| 1809 | 
            +
                def get_decoder(self):
         | 
| 1810 | 
            +
                    return self.model
         | 
| 1811 | 
            +
             | 
| 1812 | 
            +
                @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
         | 
| 1813 | 
            +
                @replace_return_docstrings(output_type=SequenceClassifierOutputWithPast, config_class=_CONFIG_FOR_DOC)
         | 
| 1814 | 
            +
                def forward(
         | 
| 1815 | 
            +
                    self,
         | 
| 1816 | 
            +
                    input_ids: torch.LongTensor = None,
         | 
| 1817 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 1818 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 1819 | 
            +
                    past_key_values: Optional[List[torch.FloatTensor]] = None,
         | 
| 1820 | 
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 1821 | 
            +
                    labels: Optional[torch.LongTensor] = None,
         | 
| 1822 | 
            +
                    use_cache: Optional[bool] = None,
         | 
| 1823 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 1824 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 1825 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 1826 | 
            +
                ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
         | 
| 1827 | 
            +
                    """
         | 
| 1828 | 
            +
                    labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
         | 
| 1829 | 
            +
                        Labels for computing the sequence classification/regression loss.
         | 
| 1830 | 
            +
             | 
| 1831 | 
            +
                    Returns:
         | 
| 1832 | 
            +
                    """
         | 
| 1833 | 
            +
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         | 
| 1834 | 
            +
                    output_hidden_states = (
         | 
| 1835 | 
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         | 
| 1836 | 
            +
                    )
         | 
| 1837 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 1838 | 
            +
             | 
| 1839 | 
            +
                    # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
         | 
| 1840 | 
            +
                    outputs = self.model(
         | 
| 1841 | 
            +
                        input_ids=input_ids,
         | 
| 1842 | 
            +
                        attention_mask=attention_mask,
         | 
| 1843 | 
            +
                        position_ids=position_ids,
         | 
| 1844 | 
            +
                        past_key_values=past_key_values,
         | 
| 1845 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 1846 | 
            +
                        use_cache=use_cache,
         | 
| 1847 | 
            +
                        output_attentions=output_attentions,
         | 
| 1848 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 1849 | 
            +
                        return_dict=return_dict,
         | 
| 1850 | 
            +
                    )
         | 
| 1851 | 
            +
             | 
| 1852 | 
            +
                    hidden_states = outputs[0]
         | 
| 1853 | 
            +
                    hidden_states = self.v_head(hidden_states)
         | 
| 1854 | 
            +
                    # get end reward token's score
         | 
| 1855 | 
            +
                    ends = attention_mask.cumsum(dim=1).argmax(dim=1).view(-1, 1)
         | 
| 1856 | 
            +
             | 
| 1857 | 
            +
                    reward_scores = torch.gather(hidden_states.squeeze(-1), 1, ends)
         | 
| 1858 | 
            +
             | 
| 1859 | 
            +
                    loss = None
         | 
| 1860 | 
            +
             | 
| 1861 | 
            +
                    if not return_dict:
         | 
| 1862 | 
            +
                        output = (reward_scores,) + outputs[1:]
         | 
| 1863 | 
            +
                        return (loss,) + output if loss is not None else output
         | 
| 1864 | 
            +
             | 
| 1865 | 
            +
                    return SequenceClassifierOutputWithPast(
         | 
| 1866 | 
            +
                        loss=loss,
         | 
| 1867 | 
            +
                        logits=reward_scores,
         | 
| 1868 | 
            +
                        past_key_values=outputs.past_key_values,
         | 
| 1869 | 
            +
                        hidden_states=outputs.hidden_states,
         | 
| 1870 | 
            +
                        attentions=outputs.attentions,
         | 
| 1871 | 
            +
                    )
         | 
| 1872 | 
            +
             | 
| 1873 | 
            +
                @torch.no_grad()
         | 
| 1874 | 
            +
                def get_score(
         | 
| 1875 | 
            +
                    self,
         | 
| 1876 | 
            +
                    tokenizer,
         | 
| 1877 | 
            +
                    conversation: List[dict],
         | 
| 1878 | 
            +
                    **kwargs,
         | 
| 1879 | 
            +
                ):
         | 
| 1880 | 
            +
                    """
         | 
| 1881 | 
            +
                    Computes the reward score for a given conversation.
         | 
| 1882 | 
            +
                    This function takes a conversation represented as a list of dictionaries, formats it into a string using the chat
         | 
| 1883 | 
            +
                    template from the tokenizer, and passes it through the model to compute the score. A special token representing
         | 
| 1884 | 
            +
                    the reward score is appended to the input sequence. The reward score is then extracted from the model's output.
         | 
| 1885 | 
            +
                    Args:
         | 
| 1886 | 
            +
                        tokenizer: The tokenizer to be used for formatting and tokenizing the conversation.
         | 
| 1887 | 
            +
                        conversation (List[dict]): A list of dictionaries where each dictionary represents a message in the conversation.
         | 
| 1888 | 
            +
                    Returns:
         | 
| 1889 | 
            +
                        float: The computed reward score from the model.
         | 
| 1890 | 
            +
                    """
         | 
| 1891 | 
            +
                    conversation_str = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=False)
         | 
| 1892 | 
            +
                    input_ids = tokenizer.encode(conversation_str, return_tensors="pt", add_special_tokens=False)
         | 
| 1893 | 
            +
                    # add reward score token at the end of the input_ids if it is not already there
         | 
| 1894 | 
            +
                    if input_ids[0, -1] != self.reward_token_id:
         | 
| 1895 | 
            +
                        input_ids = torch.cat([input_ids, torch.tensor([[self.reward_token_id]], dtype=torch.long)], dim=1)
         | 
| 1896 | 
            +
                    attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
         | 
| 1897 | 
            +
             | 
| 1898 | 
            +
                    outputs = self.forward(input_ids=input_ids.to(self.device), attention_mask=attention_mask.to(self.device), **kwargs)
         | 
| 1899 | 
            +
                    score = outputs[0].cpu().item()
         | 
| 1900 | 
            +
                    return score
         | 
| 1901 | 
            +
             | 
| 1902 | 
            +
                @torch.no_grad()
         | 
| 1903 | 
            +
                def get_scores(
         | 
| 1904 | 
            +
                    self,
         | 
| 1905 | 
            +
                    tokenizer,
         | 
| 1906 | 
            +
                    conversations: List[List[dict]],
         | 
| 1907 | 
            +
                    **kwargs,
         | 
| 1908 | 
            +
                ):
         | 
| 1909 | 
            +
                    """
         | 
| 1910 | 
            +
                    Computes the reward scores for multiple conversations in a batched manner.
         | 
| 1911 | 
            +
                    This function takes multiple conversations, each represented as a list of dictionaries, formats them into strings using the chat
         | 
| 1912 | 
            +
                    template from the tokenizer, and passes these formatted strings through the model to compute scores for each conversation.
         | 
| 1913 | 
            +
                    Each input sequence has a special token representing the reward score appended before passing to the model.
         | 
| 1914 | 
            +
                    The reward scores are then extracted from the model's output.
         | 
| 1915 | 
            +
                    Args:
         | 
| 1916 | 
            +
                        tokenizer: The tokenizer to be used for formatting and tokenizing  the conversation.
         | 
| 1917 | 
            +
                        conversations (List[List[dict]]): A list of conversations, with each conversation represented as a list of dictionaries where each dictionary contains a message.
         | 
| 1918 | 
            +
                    Returns:
         | 
| 1919 | 
            +
                        List[float]: A list of computed reward scores for each conversation in the input batch.
         | 
| 1920 | 
            +
                    """
         | 
| 1921 | 
            +
                    conversation_strs = [tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=False) for conversation in conversations]
         | 
| 1922 | 
            +
                    batch_input_ids = []
         | 
| 1923 | 
            +
                    attention_masks = []
         | 
| 1924 | 
            +
             | 
| 1925 | 
            +
                    for conversation_str in conversation_strs:
         | 
| 1926 | 
            +
                        input_ids = tokenizer.encode(conversation_str, return_tensors="pt", add_special_tokens=False)
         | 
| 1927 | 
            +
                        # add reward score token at the end of the input_ids if it is not already there
         | 
| 1928 | 
            +
                        if input_ids[0, -1] != self.reward_token_id:
         | 
| 1929 | 
            +
                            input_ids = torch.cat([input_ids, torch.tensor([[self.reward_token_id]], dtype=torch.long)], dim=1)
         | 
| 1930 | 
            +
                        input_ids = input_ids.squeeze(0)
         | 
| 1931 | 
            +
                        attention_mask = torch.ones(input_ids.shape, dtype=torch.bool)
         | 
| 1932 | 
            +
                        batch_input_ids.append(input_ids)
         | 
| 1933 | 
            +
                        attention_masks.append(attention_mask)
         | 
| 1934 | 
            +
             | 
| 1935 | 
            +
                    r_pad_batch_input_ids = torch.nn.utils.rnn.pad_sequence(batch_input_ids, batch_first=True, padding_value=tokenizer.pad_token_id)
         | 
| 1936 | 
            +
                    r_pad_attention_masks = torch.nn.utils.rnn.pad_sequence(attention_masks, batch_first=True, padding_value=False)
         | 
| 1937 | 
            +
             | 
| 1938 | 
            +
                    outputs = self.forward(input_ids=r_pad_batch_input_ids.to(self.device), attention_mask=r_pad_attention_masks.to(self.device), **kwargs)
         | 
| 1939 | 
            +
                    scores = outputs[0].squeeze().cpu().tolist()
         | 
| 1940 | 
            +
                    return scores
         | 
| 1941 | 
            +
             | 
| 1942 | 
            +
                @torch.no_grad()
         | 
| 1943 | 
            +
                def compare(
         | 
| 1944 | 
            +
                    self,
         | 
| 1945 | 
            +
                    tokenizer,
         | 
| 1946 | 
            +
                    conversation1: List[dict],
         | 
| 1947 | 
            +
                    conversation2: List[dict],
         | 
| 1948 | 
            +
                    return_logits: bool = False,
         | 
| 1949 | 
            +
                    **kwargs,
         | 
| 1950 | 
            +
                ):
         | 
| 1951 | 
            +
                    """
         | 
| 1952 | 
            +
                    Compares the reward scores of two conversations and determines which conversation has a higher score.
         | 
| 1953 | 
            +
                    This function computes reward scores for two given conversations using the `get_score` method and compares the scores to determine which conversation has a higher score.
         | 
| 1954 | 
            +
                    The function can optionally return the actual scores (logits) along with the comparison result.
         | 
| 1955 | 
            +
                    Parameters:
         | 
| 1956 | 
            +
                        tokenizer: The tokenizer used for formatting and tokenizing the conversation.
         | 
| 1957 | 
            +
                        conversation1 (List[dict]): The first conversation to compare, represented as a list of dictionaries where each dictionary contains a message.
         | 
| 1958 | 
            +
                        conversation2 (List[dict]): The second conversation to compare, similarly represented.
         | 
| 1959 | 
            +
                        return_logits (bool, optional): If True, the function returns both the comparison result and the actual scores of the two conversations. Defaults to False.
         | 
| 1960 | 
            +
                    Returns:
         | 
| 1961 | 
            +
                        bool: True if the score of the first conversation is greater than the second, otherwise False.
         | 
| 1962 | 
            +
                        List[float] (optional): A list containing the scores of the first and second conversations respectively.
         | 
| 1963 | 
            +
                    Note:
         | 
| 1964 | 
            +
                    - This function is designed for inference, with `@torch.no_grad()` used to disable gradient calculations to optimize performance.
         | 
| 1965 | 
            +
                    """
         | 
| 1966 | 
            +
                    score1 = self.get_score(tokenizer, conversation1, **kwargs)
         | 
| 1967 | 
            +
                    score2 = self.get_score(tokenizer, conversation2, **kwargs)
         | 
| 1968 | 
            +
                    if return_logits:
         | 
| 1969 | 
            +
                        return score1 > score2, [score1, score2]
         | 
| 1970 | 
            +
                    else:
         | 
| 1971 | 
            +
                        return score1 > score2
         | 
| 1972 | 
            +
             | 
| 1973 | 
            +
                @torch.no_grad()
         | 
| 1974 | 
            +
                def rank(
         | 
| 1975 | 
            +
                    self,
         | 
| 1976 | 
            +
                    tokenizer,
         | 
| 1977 | 
            +
                    conversations: List[List[dict]],
         | 
| 1978 | 
            +
                    return_logits: bool = False,
         | 
| 1979 | 
            +
                    **kwargs,
         | 
| 1980 | 
            +
                ):
         | 
| 1981 | 
            +
                    """
         | 
| 1982 | 
            +
                    Ranks the conversations based on their scores.
         | 
| 1983 | 
            +
                    Args:
         | 
| 1984 | 
            +
                        tokenizer: The tokenizer to be used for formatting and tokenizing  the conversation.
         | 
| 1985 | 
            +
                        conversations: A list of conversations, where each conversation is represented as a list of dictionaries. Each dictionary contains the necessary information for the conversation.
         | 
| 1986 | 
            +
                        return_logits: If True, returns the conversation indices along with their logits. Defaults to False.
         | 
| 1987 | 
            +
                    Returns:
         | 
| 1988 | 
            +
                        list: A list of conversation rank indices based on their scores. Smaller index means higher score.
         | 
| 1989 | 
            +
                        List[float] (optional): If return_logits is True, a list of conversation indices and their corresponding logits.
         | 
| 1990 | 
            +
                    """
         | 
| 1991 | 
            +
                    scores = self.get_scores(tokenizer, conversations, **kwargs)
         | 
| 1992 | 
            +
                    if return_logits:
         | 
| 1993 | 
            +
                        return sorted(range(len(scores)), key=lambda i: scores[i], reverse=True), scores
         | 
| 1994 | 
            +
                    else:
         | 
| 1995 | 
            +
                        return sorted(range(len(scores)), key=lambda i: scores[i], reverse=True)
         | 
    	
        pytorch_model-00001-of-00008.bin
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:c7d707f67d9afba64d0e401a78288216a8416eec6f9c23cf1cd18c0b5b62bc80
         | 
| 3 | 
            +
            size 1949342528
         | 
    	
        pytorch_model-00002-of-00008.bin
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:885acf88a70ffcd2ae5678e683a374592d1998f86c9923325523d9720f46cdd6
         | 
| 3 | 
            +
            size 1946250300
         | 
    	
        pytorch_model-00003-of-00008.bin
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:fed6276d2425ea5166a10c4b7118501d30e95ab3f39f8260e9798136883b0c5b
         | 
| 3 | 
            +
            size 1979787462
         | 
    	
        pytorch_model-00004-of-00008.bin
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:f388feaa01003a8f25adcc03f0966291e92de5c04f6e9fc279b8f22807bd5673
         | 
| 3 | 
            +
            size 1946250364
         | 
    	
        pytorch_model-00005-of-00008.bin
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:beb05bb3a134dd3cb14881e97eef6324d818acf2b042c01f6d859275ac235616
         | 
| 3 | 
            +
            size 1979787462
         | 
    	
        pytorch_model-00006-of-00008.bin
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:33c9ed2ea1abbf9c53231da8ca52ca94ddac74b0478cef8630eb002cffbb3caa
         | 
| 3 | 
            +
            size 1946250364
         | 
    	
        pytorch_model-00007-of-00008.bin
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:aa08021e5e3bf74d9659c870bd8726d6c9509cd39d763ddbc5af63636107b044
         | 
| 3 | 
            +
            size 1979787462
         | 
    	
        pytorch_model-00008-of-00008.bin
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:c654e43920fe1304bbd08da4788605eb60bf9207e6211c1dc6800ff94b6435cb
         | 
| 3 | 
            +
            size 989928192
         | 
    	
        pytorch_model.bin.index.json
    ADDED
    
    | @@ -0,0 +1,234 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "metadata": {
         | 
| 3 | 
            +
                "total_size": 14717304832
         | 
| 4 | 
            +
              },
         | 
| 5 | 
            +
              "weight_map": {
         | 
| 6 | 
            +
                "model.layers.0.attention.wo.weight": "pytorch_model-00001-of-00008.bin",
         | 
| 7 | 
            +
                "model.layers.0.attention.wqkv.weight": "pytorch_model-00001-of-00008.bin",
         | 
| 8 | 
            +
                "model.layers.0.attention_norm.weight": "pytorch_model-00001-of-00008.bin",
         | 
| 9 | 
            +
                "model.layers.0.feed_forward.w1.weight": "pytorch_model-00001-of-00008.bin",
         | 
| 10 | 
            +
                "model.layers.0.feed_forward.w2.weight": "pytorch_model-00001-of-00008.bin",
         | 
| 11 | 
            +
                "model.layers.0.feed_forward.w3.weight": "pytorch_model-00001-of-00008.bin",
         | 
| 12 | 
            +
                "model.layers.0.ffn_norm.weight": "pytorch_model-00001-of-00008.bin",
         | 
| 13 | 
            +
                "model.layers.1.attention.wo.weight": "pytorch_model-00001-of-00008.bin",
         | 
| 14 | 
            +
                "model.layers.1.attention.wqkv.weight": "pytorch_model-00001-of-00008.bin",
         | 
| 15 | 
            +
                "model.layers.1.attention_norm.weight": "pytorch_model-00001-of-00008.bin",
         | 
| 16 | 
            +
                "model.layers.1.feed_forward.w1.weight": "pytorch_model-00001-of-00008.bin",
         | 
| 17 | 
            +
                "model.layers.1.feed_forward.w2.weight": "pytorch_model-00001-of-00008.bin",
         | 
| 18 | 
            +
                "model.layers.1.feed_forward.w3.weight": "pytorch_model-00001-of-00008.bin",
         | 
| 19 | 
            +
                "model.layers.1.ffn_norm.weight": "pytorch_model-00001-of-00008.bin",
         | 
| 20 | 
            +
                "model.layers.10.attention.wo.weight": "pytorch_model-00003-of-00008.bin",
         | 
| 21 | 
            +
                "model.layers.10.attention.wqkv.weight": "pytorch_model-00003-of-00008.bin",
         | 
| 22 | 
            +
                "model.layers.10.attention_norm.weight": "pytorch_model-00003-of-00008.bin",
         | 
| 23 | 
            +
                "model.layers.10.feed_forward.w1.weight": "pytorch_model-00003-of-00008.bin",
         | 
| 24 | 
            +
                "model.layers.10.feed_forward.w2.weight": "pytorch_model-00003-of-00008.bin",
         | 
| 25 | 
            +
                "model.layers.10.feed_forward.w3.weight": "pytorch_model-00003-of-00008.bin",
         | 
| 26 | 
            +
                "model.layers.10.ffn_norm.weight": "pytorch_model-00003-of-00008.bin",
         | 
| 27 | 
            +
                "model.layers.11.attention.wo.weight": "pytorch_model-00003-of-00008.bin",
         | 
| 28 | 
            +
                "model.layers.11.attention.wqkv.weight": "pytorch_model-00003-of-00008.bin",
         | 
| 29 | 
            +
                "model.layers.11.attention_norm.weight": "pytorch_model-00004-of-00008.bin",
         | 
| 30 | 
            +
                "model.layers.11.feed_forward.w1.weight": "pytorch_model-00003-of-00008.bin",
         | 
| 31 | 
            +
                "model.layers.11.feed_forward.w2.weight": "pytorch_model-00004-of-00008.bin",
         | 
| 32 | 
            +
                "model.layers.11.feed_forward.w3.weight": "pytorch_model-00003-of-00008.bin",
         | 
| 33 | 
            +
                "model.layers.11.ffn_norm.weight": "pytorch_model-00004-of-00008.bin",
         | 
| 34 | 
            +
                "model.layers.12.attention.wo.weight": "pytorch_model-00004-of-00008.bin",
         | 
| 35 | 
            +
                "model.layers.12.attention.wqkv.weight": "pytorch_model-00004-of-00008.bin",
         | 
| 36 | 
            +
                "model.layers.12.attention_norm.weight": "pytorch_model-00004-of-00008.bin",
         | 
| 37 | 
            +
                "model.layers.12.feed_forward.w1.weight": "pytorch_model-00004-of-00008.bin",
         | 
| 38 | 
            +
                "model.layers.12.feed_forward.w2.weight": "pytorch_model-00004-of-00008.bin",
         | 
| 39 | 
            +
                "model.layers.12.feed_forward.w3.weight": "pytorch_model-00004-of-00008.bin",
         | 
| 40 | 
            +
                "model.layers.12.ffn_norm.weight": "pytorch_model-00004-of-00008.bin",
         | 
| 41 | 
            +
                "model.layers.13.attention.wo.weight": "pytorch_model-00004-of-00008.bin",
         | 
| 42 | 
            +
                "model.layers.13.attention.wqkv.weight": "pytorch_model-00004-of-00008.bin",
         | 
| 43 | 
            +
                "model.layers.13.attention_norm.weight": "pytorch_model-00004-of-00008.bin",
         | 
| 44 | 
            +
                "model.layers.13.feed_forward.w1.weight": "pytorch_model-00004-of-00008.bin",
         | 
| 45 | 
            +
                "model.layers.13.feed_forward.w2.weight": "pytorch_model-00004-of-00008.bin",
         | 
| 46 | 
            +
                "model.layers.13.feed_forward.w3.weight": "pytorch_model-00004-of-00008.bin",
         | 
| 47 | 
            +
                "model.layers.13.ffn_norm.weight": "pytorch_model-00004-of-00008.bin",
         | 
| 48 | 
            +
                "model.layers.14.attention.wo.weight": "pytorch_model-00004-of-00008.bin",
         | 
| 49 | 
            +
                "model.layers.14.attention.wqkv.weight": "pytorch_model-00004-of-00008.bin",
         | 
| 50 | 
            +
                "model.layers.14.attention_norm.weight": "pytorch_model-00004-of-00008.bin",
         | 
| 51 | 
            +
                "model.layers.14.feed_forward.w1.weight": "pytorch_model-00004-of-00008.bin",
         | 
| 52 | 
            +
                "model.layers.14.feed_forward.w2.weight": "pytorch_model-00004-of-00008.bin",
         | 
| 53 | 
            +
                "model.layers.14.feed_forward.w3.weight": "pytorch_model-00004-of-00008.bin",
         | 
| 54 | 
            +
                "model.layers.14.ffn_norm.weight": "pytorch_model-00004-of-00008.bin",
         | 
| 55 | 
            +
                "model.layers.15.attention.wo.weight": "pytorch_model-00004-of-00008.bin",
         | 
| 56 | 
            +
                "model.layers.15.attention.wqkv.weight": "pytorch_model-00004-of-00008.bin",
         | 
| 57 | 
            +
                "model.layers.15.attention_norm.weight": "pytorch_model-00004-of-00008.bin",
         | 
| 58 | 
            +
                "model.layers.15.feed_forward.w1.weight": "pytorch_model-00004-of-00008.bin",
         | 
| 59 | 
            +
                "model.layers.15.feed_forward.w2.weight": "pytorch_model-00004-of-00008.bin",
         | 
| 60 | 
            +
                "model.layers.15.feed_forward.w3.weight": "pytorch_model-00004-of-00008.bin",
         | 
| 61 | 
            +
                "model.layers.15.ffn_norm.weight": "pytorch_model-00004-of-00008.bin",
         | 
| 62 | 
            +
                "model.layers.16.attention.wo.weight": "pytorch_model-00004-of-00008.bin",
         | 
| 63 | 
            +
                "model.layers.16.attention.wqkv.weight": "pytorch_model-00004-of-00008.bin",
         | 
| 64 | 
            +
                "model.layers.16.attention_norm.weight": "pytorch_model-00005-of-00008.bin",
         | 
| 65 | 
            +
                "model.layers.16.feed_forward.w1.weight": "pytorch_model-00005-of-00008.bin",
         | 
| 66 | 
            +
                "model.layers.16.feed_forward.w2.weight": "pytorch_model-00005-of-00008.bin",
         | 
| 67 | 
            +
                "model.layers.16.feed_forward.w3.weight": "pytorch_model-00005-of-00008.bin",
         | 
| 68 | 
            +
                "model.layers.16.ffn_norm.weight": "pytorch_model-00005-of-00008.bin",
         | 
| 69 | 
            +
                "model.layers.17.attention.wo.weight": "pytorch_model-00005-of-00008.bin",
         | 
| 70 | 
            +
                "model.layers.17.attention.wqkv.weight": "pytorch_model-00005-of-00008.bin",
         | 
| 71 | 
            +
                "model.layers.17.attention_norm.weight": "pytorch_model-00005-of-00008.bin",
         | 
| 72 | 
            +
                "model.layers.17.feed_forward.w1.weight": "pytorch_model-00005-of-00008.bin",
         | 
| 73 | 
            +
                "model.layers.17.feed_forward.w2.weight": "pytorch_model-00005-of-00008.bin",
         | 
| 74 | 
            +
                "model.layers.17.feed_forward.w3.weight": "pytorch_model-00005-of-00008.bin",
         | 
| 75 | 
            +
                "model.layers.17.ffn_norm.weight": "pytorch_model-00005-of-00008.bin",
         | 
| 76 | 
            +
                "model.layers.18.attention.wo.weight": "pytorch_model-00005-of-00008.bin",
         | 
| 77 | 
            +
                "model.layers.18.attention.wqkv.weight": "pytorch_model-00005-of-00008.bin",
         | 
| 78 | 
            +
                "model.layers.18.attention_norm.weight": "pytorch_model-00005-of-00008.bin",
         | 
| 79 | 
            +
                "model.layers.18.feed_forward.w1.weight": "pytorch_model-00005-of-00008.bin",
         | 
| 80 | 
            +
                "model.layers.18.feed_forward.w2.weight": "pytorch_model-00005-of-00008.bin",
         | 
| 81 | 
            +
                "model.layers.18.feed_forward.w3.weight": "pytorch_model-00005-of-00008.bin",
         | 
| 82 | 
            +
                "model.layers.18.ffn_norm.weight": "pytorch_model-00005-of-00008.bin",
         | 
| 83 | 
            +
                "model.layers.19.attention.wo.weight": "pytorch_model-00005-of-00008.bin",
         | 
| 84 | 
            +
                "model.layers.19.attention.wqkv.weight": "pytorch_model-00005-of-00008.bin",
         | 
| 85 | 
            +
                "model.layers.19.attention_norm.weight": "pytorch_model-00005-of-00008.bin",
         | 
| 86 | 
            +
                "model.layers.19.feed_forward.w1.weight": "pytorch_model-00005-of-00008.bin",
         | 
| 87 | 
            +
                "model.layers.19.feed_forward.w2.weight": "pytorch_model-00005-of-00008.bin",
         | 
| 88 | 
            +
                "model.layers.19.feed_forward.w3.weight": "pytorch_model-00005-of-00008.bin",
         | 
| 89 | 
            +
                "model.layers.19.ffn_norm.weight": "pytorch_model-00005-of-00008.bin",
         | 
| 90 | 
            +
                "model.layers.2.attention.wo.weight": "pytorch_model-00001-of-00008.bin",
         | 
| 91 | 
            +
                "model.layers.2.attention.wqkv.weight": "pytorch_model-00001-of-00008.bin",
         | 
| 92 | 
            +
                "model.layers.2.attention_norm.weight": "pytorch_model-00002-of-00008.bin",
         | 
| 93 | 
            +
                "model.layers.2.feed_forward.w1.weight": "pytorch_model-00001-of-00008.bin",
         | 
| 94 | 
            +
                "model.layers.2.feed_forward.w2.weight": "pytorch_model-00002-of-00008.bin",
         | 
| 95 | 
            +
                "model.layers.2.feed_forward.w3.weight": "pytorch_model-00001-of-00008.bin",
         | 
| 96 | 
            +
                "model.layers.2.ffn_norm.weight": "pytorch_model-00002-of-00008.bin",
         | 
| 97 | 
            +
                "model.layers.20.attention.wo.weight": "pytorch_model-00005-of-00008.bin",
         | 
| 98 | 
            +
                "model.layers.20.attention.wqkv.weight": "pytorch_model-00005-of-00008.bin",
         | 
| 99 | 
            +
                "model.layers.20.attention_norm.weight": "pytorch_model-00006-of-00008.bin",
         | 
| 100 | 
            +
                "model.layers.20.feed_forward.w1.weight": "pytorch_model-00005-of-00008.bin",
         | 
| 101 | 
            +
                "model.layers.20.feed_forward.w2.weight": "pytorch_model-00006-of-00008.bin",
         | 
| 102 | 
            +
                "model.layers.20.feed_forward.w3.weight": "pytorch_model-00005-of-00008.bin",
         | 
| 103 | 
            +
                "model.layers.20.ffn_norm.weight": "pytorch_model-00006-of-00008.bin",
         | 
| 104 | 
            +
                "model.layers.21.attention.wo.weight": "pytorch_model-00006-of-00008.bin",
         | 
| 105 | 
            +
                "model.layers.21.attention.wqkv.weight": "pytorch_model-00006-of-00008.bin",
         | 
| 106 | 
            +
                "model.layers.21.attention_norm.weight": "pytorch_model-00006-of-00008.bin",
         | 
| 107 | 
            +
                "model.layers.21.feed_forward.w1.weight": "pytorch_model-00006-of-00008.bin",
         | 
| 108 | 
            +
                "model.layers.21.feed_forward.w2.weight": "pytorch_model-00006-of-00008.bin",
         | 
| 109 | 
            +
                "model.layers.21.feed_forward.w3.weight": "pytorch_model-00006-of-00008.bin",
         | 
| 110 | 
            +
                "model.layers.21.ffn_norm.weight": "pytorch_model-00006-of-00008.bin",
         | 
| 111 | 
            +
                "model.layers.22.attention.wo.weight": "pytorch_model-00006-of-00008.bin",
         | 
| 112 | 
            +
                "model.layers.22.attention.wqkv.weight": "pytorch_model-00006-of-00008.bin",
         | 
| 113 | 
            +
                "model.layers.22.attention_norm.weight": "pytorch_model-00006-of-00008.bin",
         | 
| 114 | 
            +
                "model.layers.22.feed_forward.w1.weight": "pytorch_model-00006-of-00008.bin",
         | 
| 115 | 
            +
                "model.layers.22.feed_forward.w2.weight": "pytorch_model-00006-of-00008.bin",
         | 
| 116 | 
            +
                "model.layers.22.feed_forward.w3.weight": "pytorch_model-00006-of-00008.bin",
         | 
| 117 | 
            +
                "model.layers.22.ffn_norm.weight": "pytorch_model-00006-of-00008.bin",
         | 
| 118 | 
            +
                "model.layers.23.attention.wo.weight": "pytorch_model-00006-of-00008.bin",
         | 
| 119 | 
            +
                "model.layers.23.attention.wqkv.weight": "pytorch_model-00006-of-00008.bin",
         | 
| 120 | 
            +
                "model.layers.23.attention_norm.weight": "pytorch_model-00006-of-00008.bin",
         | 
| 121 | 
            +
                "model.layers.23.feed_forward.w1.weight": "pytorch_model-00006-of-00008.bin",
         | 
| 122 | 
            +
                "model.layers.23.feed_forward.w2.weight": "pytorch_model-00006-of-00008.bin",
         | 
| 123 | 
            +
                "model.layers.23.feed_forward.w3.weight": "pytorch_model-00006-of-00008.bin",
         | 
| 124 | 
            +
                "model.layers.23.ffn_norm.weight": "pytorch_model-00006-of-00008.bin",
         | 
| 125 | 
            +
                "model.layers.24.attention.wo.weight": "pytorch_model-00006-of-00008.bin",
         | 
| 126 | 
            +
                "model.layers.24.attention.wqkv.weight": "pytorch_model-00006-of-00008.bin",
         | 
| 127 | 
            +
                "model.layers.24.attention_norm.weight": "pytorch_model-00006-of-00008.bin",
         | 
| 128 | 
            +
                "model.layers.24.feed_forward.w1.weight": "pytorch_model-00006-of-00008.bin",
         | 
| 129 | 
            +
                "model.layers.24.feed_forward.w2.weight": "pytorch_model-00006-of-00008.bin",
         | 
| 130 | 
            +
                "model.layers.24.feed_forward.w3.weight": "pytorch_model-00006-of-00008.bin",
         | 
| 131 | 
            +
                "model.layers.24.ffn_norm.weight": "pytorch_model-00006-of-00008.bin",
         | 
| 132 | 
            +
                "model.layers.25.attention.wo.weight": "pytorch_model-00006-of-00008.bin",
         | 
| 133 | 
            +
                "model.layers.25.attention.wqkv.weight": "pytorch_model-00006-of-00008.bin",
         | 
| 134 | 
            +
                "model.layers.25.attention_norm.weight": "pytorch_model-00007-of-00008.bin",
         | 
| 135 | 
            +
                "model.layers.25.feed_forward.w1.weight": "pytorch_model-00007-of-00008.bin",
         | 
| 136 | 
            +
                "model.layers.25.feed_forward.w2.weight": "pytorch_model-00007-of-00008.bin",
         | 
| 137 | 
            +
                "model.layers.25.feed_forward.w3.weight": "pytorch_model-00007-of-00008.bin",
         | 
| 138 | 
            +
                "model.layers.25.ffn_norm.weight": "pytorch_model-00007-of-00008.bin",
         | 
| 139 | 
            +
                "model.layers.26.attention.wo.weight": "pytorch_model-00007-of-00008.bin",
         | 
| 140 | 
            +
                "model.layers.26.attention.wqkv.weight": "pytorch_model-00007-of-00008.bin",
         | 
| 141 | 
            +
                "model.layers.26.attention_norm.weight": "pytorch_model-00007-of-00008.bin",
         | 
| 142 | 
            +
                "model.layers.26.feed_forward.w1.weight": "pytorch_model-00007-of-00008.bin",
         | 
| 143 | 
            +
                "model.layers.26.feed_forward.w2.weight": "pytorch_model-00007-of-00008.bin",
         | 
| 144 | 
            +
                "model.layers.26.feed_forward.w3.weight": "pytorch_model-00007-of-00008.bin",
         | 
| 145 | 
            +
                "model.layers.26.ffn_norm.weight": "pytorch_model-00007-of-00008.bin",
         | 
| 146 | 
            +
                "model.layers.27.attention.wo.weight": "pytorch_model-00007-of-00008.bin",
         | 
| 147 | 
            +
                "model.layers.27.attention.wqkv.weight": "pytorch_model-00007-of-00008.bin",
         | 
| 148 | 
            +
                "model.layers.27.attention_norm.weight": "pytorch_model-00007-of-00008.bin",
         | 
| 149 | 
            +
                "model.layers.27.feed_forward.w1.weight": "pytorch_model-00007-of-00008.bin",
         | 
| 150 | 
            +
                "model.layers.27.feed_forward.w2.weight": "pytorch_model-00007-of-00008.bin",
         | 
| 151 | 
            +
                "model.layers.27.feed_forward.w3.weight": "pytorch_model-00007-of-00008.bin",
         | 
| 152 | 
            +
                "model.layers.27.ffn_norm.weight": "pytorch_model-00007-of-00008.bin",
         | 
| 153 | 
            +
                "model.layers.28.attention.wo.weight": "pytorch_model-00007-of-00008.bin",
         | 
| 154 | 
            +
                "model.layers.28.attention.wqkv.weight": "pytorch_model-00007-of-00008.bin",
         | 
| 155 | 
            +
                "model.layers.28.attention_norm.weight": "pytorch_model-00007-of-00008.bin",
         | 
| 156 | 
            +
                "model.layers.28.feed_forward.w1.weight": "pytorch_model-00007-of-00008.bin",
         | 
| 157 | 
            +
                "model.layers.28.feed_forward.w2.weight": "pytorch_model-00007-of-00008.bin",
         | 
| 158 | 
            +
                "model.layers.28.feed_forward.w3.weight": "pytorch_model-00007-of-00008.bin",
         | 
| 159 | 
            +
                "model.layers.28.ffn_norm.weight": "pytorch_model-00007-of-00008.bin",
         | 
| 160 | 
            +
                "model.layers.29.attention.wo.weight": "pytorch_model-00007-of-00008.bin",
         | 
| 161 | 
            +
                "model.layers.29.attention.wqkv.weight": "pytorch_model-00007-of-00008.bin",
         | 
| 162 | 
            +
                "model.layers.29.attention_norm.weight": "pytorch_model-00008-of-00008.bin",
         | 
| 163 | 
            +
                "model.layers.29.feed_forward.w1.weight": "pytorch_model-00007-of-00008.bin",
         | 
| 164 | 
            +
                "model.layers.29.feed_forward.w2.weight": "pytorch_model-00008-of-00008.bin",
         | 
| 165 | 
            +
                "model.layers.29.feed_forward.w3.weight": "pytorch_model-00007-of-00008.bin",
         | 
| 166 | 
            +
                "model.layers.29.ffn_norm.weight": "pytorch_model-00008-of-00008.bin",
         | 
| 167 | 
            +
                "model.layers.3.attention.wo.weight": "pytorch_model-00002-of-00008.bin",
         | 
| 168 | 
            +
                "model.layers.3.attention.wqkv.weight": "pytorch_model-00002-of-00008.bin",
         | 
| 169 | 
            +
                "model.layers.3.attention_norm.weight": "pytorch_model-00002-of-00008.bin",
         | 
| 170 | 
            +
                "model.layers.3.feed_forward.w1.weight": "pytorch_model-00002-of-00008.bin",
         | 
| 171 | 
            +
                "model.layers.3.feed_forward.w2.weight": "pytorch_model-00002-of-00008.bin",
         | 
| 172 | 
            +
                "model.layers.3.feed_forward.w3.weight": "pytorch_model-00002-of-00008.bin",
         | 
| 173 | 
            +
                "model.layers.3.ffn_norm.weight": "pytorch_model-00002-of-00008.bin",
         | 
| 174 | 
            +
                "model.layers.30.attention.wo.weight": "pytorch_model-00008-of-00008.bin",
         | 
| 175 | 
            +
                "model.layers.30.attention.wqkv.weight": "pytorch_model-00008-of-00008.bin",
         | 
| 176 | 
            +
                "model.layers.30.attention_norm.weight": "pytorch_model-00008-of-00008.bin",
         | 
| 177 | 
            +
                "model.layers.30.feed_forward.w1.weight": "pytorch_model-00008-of-00008.bin",
         | 
| 178 | 
            +
                "model.layers.30.feed_forward.w2.weight": "pytorch_model-00008-of-00008.bin",
         | 
| 179 | 
            +
                "model.layers.30.feed_forward.w3.weight": "pytorch_model-00008-of-00008.bin",
         | 
| 180 | 
            +
                "model.layers.30.ffn_norm.weight": "pytorch_model-00008-of-00008.bin",
         | 
| 181 | 
            +
                "model.layers.31.attention.wo.weight": "pytorch_model-00008-of-00008.bin",
         | 
| 182 | 
            +
                "model.layers.31.attention.wqkv.weight": "pytorch_model-00008-of-00008.bin",
         | 
| 183 | 
            +
                "model.layers.31.attention_norm.weight": "pytorch_model-00008-of-00008.bin",
         | 
| 184 | 
            +
                "model.layers.31.feed_forward.w1.weight": "pytorch_model-00008-of-00008.bin",
         | 
| 185 | 
            +
                "model.layers.31.feed_forward.w2.weight": "pytorch_model-00008-of-00008.bin",
         | 
| 186 | 
            +
                "model.layers.31.feed_forward.w3.weight": "pytorch_model-00008-of-00008.bin",
         | 
| 187 | 
            +
                "model.layers.31.ffn_norm.weight": "pytorch_model-00008-of-00008.bin",
         | 
| 188 | 
            +
                "model.layers.4.attention.wo.weight": "pytorch_model-00002-of-00008.bin",
         | 
| 189 | 
            +
                "model.layers.4.attention.wqkv.weight": "pytorch_model-00002-of-00008.bin",
         | 
| 190 | 
            +
                "model.layers.4.attention_norm.weight": "pytorch_model-00002-of-00008.bin",
         | 
| 191 | 
            +
                "model.layers.4.feed_forward.w1.weight": "pytorch_model-00002-of-00008.bin",
         | 
| 192 | 
            +
                "model.layers.4.feed_forward.w2.weight": "pytorch_model-00002-of-00008.bin",
         | 
| 193 | 
            +
                "model.layers.4.feed_forward.w3.weight": "pytorch_model-00002-of-00008.bin",
         | 
| 194 | 
            +
                "model.layers.4.ffn_norm.weight": "pytorch_model-00002-of-00008.bin",
         | 
| 195 | 
            +
                "model.layers.5.attention.wo.weight": "pytorch_model-00002-of-00008.bin",
         | 
| 196 | 
            +
                "model.layers.5.attention.wqkv.weight": "pytorch_model-00002-of-00008.bin",
         | 
| 197 | 
            +
                "model.layers.5.attention_norm.weight": "pytorch_model-00002-of-00008.bin",
         | 
| 198 | 
            +
                "model.layers.5.feed_forward.w1.weight": "pytorch_model-00002-of-00008.bin",
         | 
| 199 | 
            +
                "model.layers.5.feed_forward.w2.weight": "pytorch_model-00002-of-00008.bin",
         | 
| 200 | 
            +
                "model.layers.5.feed_forward.w3.weight": "pytorch_model-00002-of-00008.bin",
         | 
| 201 | 
            +
                "model.layers.5.ffn_norm.weight": "pytorch_model-00002-of-00008.bin",
         | 
| 202 | 
            +
                "model.layers.6.attention.wo.weight": "pytorch_model-00002-of-00008.bin",
         | 
| 203 | 
            +
                "model.layers.6.attention.wqkv.weight": "pytorch_model-00002-of-00008.bin",
         | 
| 204 | 
            +
                "model.layers.6.attention_norm.weight": "pytorch_model-00002-of-00008.bin",
         | 
| 205 | 
            +
                "model.layers.6.feed_forward.w1.weight": "pytorch_model-00002-of-00008.bin",
         | 
| 206 | 
            +
                "model.layers.6.feed_forward.w2.weight": "pytorch_model-00002-of-00008.bin",
         | 
| 207 | 
            +
                "model.layers.6.feed_forward.w3.weight": "pytorch_model-00002-of-00008.bin",
         | 
| 208 | 
            +
                "model.layers.6.ffn_norm.weight": "pytorch_model-00002-of-00008.bin",
         | 
| 209 | 
            +
                "model.layers.7.attention.wo.weight": "pytorch_model-00002-of-00008.bin",
         | 
| 210 | 
            +
                "model.layers.7.attention.wqkv.weight": "pytorch_model-00002-of-00008.bin",
         | 
| 211 | 
            +
                "model.layers.7.attention_norm.weight": "pytorch_model-00003-of-00008.bin",
         | 
| 212 | 
            +
                "model.layers.7.feed_forward.w1.weight": "pytorch_model-00003-of-00008.bin",
         | 
| 213 | 
            +
                "model.layers.7.feed_forward.w2.weight": "pytorch_model-00003-of-00008.bin",
         | 
| 214 | 
            +
                "model.layers.7.feed_forward.w3.weight": "pytorch_model-00003-of-00008.bin",
         | 
| 215 | 
            +
                "model.layers.7.ffn_norm.weight": "pytorch_model-00003-of-00008.bin",
         | 
| 216 | 
            +
                "model.layers.8.attention.wo.weight": "pytorch_model-00003-of-00008.bin",
         | 
| 217 | 
            +
                "model.layers.8.attention.wqkv.weight": "pytorch_model-00003-of-00008.bin",
         | 
| 218 | 
            +
                "model.layers.8.attention_norm.weight": "pytorch_model-00003-of-00008.bin",
         | 
| 219 | 
            +
                "model.layers.8.feed_forward.w1.weight": "pytorch_model-00003-of-00008.bin",
         | 
| 220 | 
            +
                "model.layers.8.feed_forward.w2.weight": "pytorch_model-00003-of-00008.bin",
         | 
| 221 | 
            +
                "model.layers.8.feed_forward.w3.weight": "pytorch_model-00003-of-00008.bin",
         | 
| 222 | 
            +
                "model.layers.8.ffn_norm.weight": "pytorch_model-00003-of-00008.bin",
         | 
| 223 | 
            +
                "model.layers.9.attention.wo.weight": "pytorch_model-00003-of-00008.bin",
         | 
| 224 | 
            +
                "model.layers.9.attention.wqkv.weight": "pytorch_model-00003-of-00008.bin",
         | 
| 225 | 
            +
                "model.layers.9.attention_norm.weight": "pytorch_model-00003-of-00008.bin",
         | 
| 226 | 
            +
                "model.layers.9.feed_forward.w1.weight": "pytorch_model-00003-of-00008.bin",
         | 
| 227 | 
            +
                "model.layers.9.feed_forward.w2.weight": "pytorch_model-00003-of-00008.bin",
         | 
| 228 | 
            +
                "model.layers.9.feed_forward.w3.weight": "pytorch_model-00003-of-00008.bin",
         | 
| 229 | 
            +
                "model.layers.9.ffn_norm.weight": "pytorch_model-00003-of-00008.bin",
         | 
| 230 | 
            +
                "model.norm.weight": "pytorch_model-00008-of-00008.bin",
         | 
| 231 | 
            +
                "model.tok_embeddings.weight": "pytorch_model-00001-of-00008.bin",
         | 
| 232 | 
            +
                "v_head.weight": "pytorch_model-00008-of-00008.bin"
         | 
| 233 | 
            +
              }
         | 
| 234 | 
            +
            }
         | 
    	
        special_tokens_map.json
    ADDED
    
    | @@ -0,0 +1,39 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "additional_special_tokens": [
         | 
| 3 | 
            +
                "<|im_start|>",
         | 
| 4 | 
            +
                "<|im_end|>",
         | 
| 5 | 
            +
                "<|action_start|>",
         | 
| 6 | 
            +
                "<|action_end|>",
         | 
| 7 | 
            +
                "<|interpreter|>",
         | 
| 8 | 
            +
                "<|plugin|>",
         | 
| 9 | 
            +
                "<|reward|>"
         | 
| 10 | 
            +
              ],
         | 
| 11 | 
            +
              "bos_token": {
         | 
| 12 | 
            +
                "content": "<s>",
         | 
| 13 | 
            +
                "lstrip": false,
         | 
| 14 | 
            +
                "normalized": false,
         | 
| 15 | 
            +
                "rstrip": false,
         | 
| 16 | 
            +
                "single_word": false
         | 
| 17 | 
            +
              },
         | 
| 18 | 
            +
              "eos_token": {
         | 
| 19 | 
            +
                "content": "</s>",
         | 
| 20 | 
            +
                "lstrip": false,
         | 
| 21 | 
            +
                "normalized": false,
         | 
| 22 | 
            +
                "rstrip": false,
         | 
| 23 | 
            +
                "single_word": false
         | 
| 24 | 
            +
              },
         | 
| 25 | 
            +
              "pad_token": {
         | 
| 26 | 
            +
                "content": "</s>",
         | 
| 27 | 
            +
                "lstrip": false,
         | 
| 28 | 
            +
                "normalized": false,
         | 
| 29 | 
            +
                "rstrip": false,
         | 
| 30 | 
            +
                "single_word": false
         | 
| 31 | 
            +
              },
         | 
| 32 | 
            +
              "unk_token": {
         | 
| 33 | 
            +
                "content": "<unk>",
         | 
| 34 | 
            +
                "lstrip": false,
         | 
| 35 | 
            +
                "normalized": false,
         | 
| 36 | 
            +
                "rstrip": false,
         | 
| 37 | 
            +
                "single_word": false
         | 
| 38 | 
            +
              }
         | 
| 39 | 
            +
            }
         | 
    	
        tokenization_internlm2.py
    ADDED
    
    | @@ -0,0 +1,236 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # coding=utf-8
         | 
| 2 | 
            +
            # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
         | 
| 3 | 
            +
            #
         | 
| 4 | 
            +
            # This code is based on transformers/src/transformers/models/llama/tokenization_llama.py
         | 
| 5 | 
            +
            #
         | 
| 6 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 7 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 8 | 
            +
            # You may obtain a copy of the License at
         | 
| 9 | 
            +
            #
         | 
| 10 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 11 | 
            +
            #
         | 
| 12 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 13 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 14 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 15 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 16 | 
            +
            # limitations under the License.
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            """Tokenization classes for InternLM."""
         | 
| 19 | 
            +
            import os
         | 
| 20 | 
            +
            from shutil import copyfile
         | 
| 21 | 
            +
            from typing import Any, Dict, List, Optional, Tuple
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            import sentencepiece as spm
         | 
| 24 | 
            +
            from transformers.tokenization_utils import PreTrainedTokenizer
         | 
| 25 | 
            +
            from transformers.utils import logging
         | 
| 26 | 
            +
             | 
| 27 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 28 | 
            +
             | 
| 29 | 
            +
            VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
         | 
| 30 | 
            +
             | 
| 31 | 
            +
            PRETRAINED_VOCAB_FILES_MAP = {}
         | 
| 32 | 
            +
             | 
| 33 | 
            +
             | 
| 34 | 
            +
            # Modified from transformers.model.llama.tokenization_llama.LlamaTokenizer
         | 
| 35 | 
            +
            class InternLM2Tokenizer(PreTrainedTokenizer):
         | 
| 36 | 
            +
                """
         | 
| 37 | 
            +
                Construct a InternLM2 tokenizer. Based on byte-level Byte-Pair-Encoding.
         | 
| 38 | 
            +
             | 
| 39 | 
            +
                Args:
         | 
| 40 | 
            +
                    vocab_file (`str`):
         | 
| 41 | 
            +
                        Path to the vocabulary file.
         | 
| 42 | 
            +
                """
         | 
| 43 | 
            +
             | 
| 44 | 
            +
                vocab_files_names = VOCAB_FILES_NAMES
         | 
| 45 | 
            +
                pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
         | 
| 46 | 
            +
                model_input_names = ["input_ids", "attention_mask"]
         | 
| 47 | 
            +
                _auto_class = "AutoTokenizer"
         | 
| 48 | 
            +
             | 
| 49 | 
            +
                def __init__(
         | 
| 50 | 
            +
                    self,
         | 
| 51 | 
            +
                    vocab_file,
         | 
| 52 | 
            +
                    unk_token="<unk>",
         | 
| 53 | 
            +
                    bos_token="<s>",
         | 
| 54 | 
            +
                    eos_token="</s>",
         | 
| 55 | 
            +
                    pad_token="</s>",
         | 
| 56 | 
            +
                    sp_model_kwargs: Optional[Dict[str, Any]] = None,
         | 
| 57 | 
            +
                    add_bos_token=True,
         | 
| 58 | 
            +
                    add_eos_token=False,
         | 
| 59 | 
            +
                    decode_with_prefix_space=False,
         | 
| 60 | 
            +
                    clean_up_tokenization_spaces=False,
         | 
| 61 | 
            +
                    **kwargs,
         | 
| 62 | 
            +
                ):
         | 
| 63 | 
            +
                    self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
         | 
| 64 | 
            +
                    self.vocab_file = vocab_file
         | 
| 65 | 
            +
                    self.add_bos_token = add_bos_token
         | 
| 66 | 
            +
                    self.add_eos_token = add_eos_token
         | 
| 67 | 
            +
                    self.decode_with_prefix_space = decode_with_prefix_space
         | 
| 68 | 
            +
                    self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
         | 
| 69 | 
            +
                    self.sp_model.Load(vocab_file)
         | 
| 70 | 
            +
                    self._no_prefix_space_tokens = None
         | 
| 71 | 
            +
                    super().__init__(
         | 
| 72 | 
            +
                        bos_token=bos_token,
         | 
| 73 | 
            +
                        eos_token=eos_token,
         | 
| 74 | 
            +
                        unk_token=unk_token,
         | 
| 75 | 
            +
                        pad_token=pad_token,
         | 
| 76 | 
            +
                        clean_up_tokenization_spaces=clean_up_tokenization_spaces,
         | 
| 77 | 
            +
                        **kwargs,
         | 
| 78 | 
            +
                    )
         | 
| 79 | 
            +
             | 
| 80 | 
            +
                @property
         | 
| 81 | 
            +
                def no_prefix_space_tokens(self):
         | 
| 82 | 
            +
                    if self._no_prefix_space_tokens is None:
         | 
| 83 | 
            +
                        vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
         | 
| 84 | 
            +
                        self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith("▁")}
         | 
| 85 | 
            +
                    return self._no_prefix_space_tokens
         | 
| 86 | 
            +
             | 
| 87 | 
            +
                @property
         | 
| 88 | 
            +
                def vocab_size(self):
         | 
| 89 | 
            +
                    """Returns vocab size"""
         | 
| 90 | 
            +
                    return self.sp_model.get_piece_size()
         | 
| 91 | 
            +
             | 
| 92 | 
            +
                @property
         | 
| 93 | 
            +
                def bos_token_id(self) -> Optional[int]:
         | 
| 94 | 
            +
                    return self.sp_model.bos_id()
         | 
| 95 | 
            +
             | 
| 96 | 
            +
                @property
         | 
| 97 | 
            +
                def eos_token_id(self) -> Optional[int]:
         | 
| 98 | 
            +
                    return self.sp_model.eos_id()
         | 
| 99 | 
            +
             | 
| 100 | 
            +
                def get_vocab(self):
         | 
| 101 | 
            +
                    """Returns vocab as a dict"""
         | 
| 102 | 
            +
                    vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
         | 
| 103 | 
            +
                    vocab.update(self.added_tokens_encoder)
         | 
| 104 | 
            +
                    return vocab
         | 
| 105 | 
            +
             | 
| 106 | 
            +
                def _tokenize(self, text):
         | 
| 107 | 
            +
                    """Returns a tokenized string."""
         | 
| 108 | 
            +
                    return self.sp_model.encode(text, out_type=str)
         | 
| 109 | 
            +
             | 
| 110 | 
            +
                def _convert_token_to_id(self, token):
         | 
| 111 | 
            +
                    """Converts a token (str) in an id using the vocab."""
         | 
| 112 | 
            +
                    return self.sp_model.piece_to_id(token)
         | 
| 113 | 
            +
             | 
| 114 | 
            +
                def _convert_id_to_token(self, index):
         | 
| 115 | 
            +
                    """Converts an index (integer) in a token (str) using the vocab."""
         | 
| 116 | 
            +
                    token = self.sp_model.IdToPiece(index)
         | 
| 117 | 
            +
                    return token
         | 
| 118 | 
            +
             | 
| 119 | 
            +
                def _maybe_add_prefix_space(self, tokens, decoded):
         | 
| 120 | 
            +
                    if tokens and tokens[0] not in self.no_prefix_space_tokens:
         | 
| 121 | 
            +
                        return " " + decoded
         | 
| 122 | 
            +
                    else:
         | 
| 123 | 
            +
                        return decoded
         | 
| 124 | 
            +
             | 
| 125 | 
            +
                def convert_tokens_to_string(self, tokens):
         | 
| 126 | 
            +
                    """Converts a sequence of tokens (string) in a single string."""
         | 
| 127 | 
            +
                    current_sub_tokens = []
         | 
| 128 | 
            +
                    out_string = ""
         | 
| 129 | 
            +
                    prev_is_special = False
         | 
| 130 | 
            +
                    for token in tokens:
         | 
| 131 | 
            +
                        # make sure that special tokens are not decoded using sentencepiece model
         | 
| 132 | 
            +
                        if token in self.all_special_tokens:
         | 
| 133 | 
            +
                            if not prev_is_special:
         | 
| 134 | 
            +
                                out_string += " "
         | 
| 135 | 
            +
                            out_string += self.sp_model.decode(current_sub_tokens) + token
         | 
| 136 | 
            +
                            prev_is_special = True
         | 
| 137 | 
            +
                            current_sub_tokens = []
         | 
| 138 | 
            +
                        else:
         | 
| 139 | 
            +
                            current_sub_tokens.append(token)
         | 
| 140 | 
            +
                            prev_is_special = False
         | 
| 141 | 
            +
                    out_string += self.sp_model.decode(current_sub_tokens)
         | 
| 142 | 
            +
                    out_string = self.clean_up_tokenization(out_string)
         | 
| 143 | 
            +
                    out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string)
         | 
| 144 | 
            +
                    return out_string[1:]
         | 
| 145 | 
            +
             | 
| 146 | 
            +
                def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
         | 
| 147 | 
            +
                    """
         | 
| 148 | 
            +
                    Save the vocabulary and special tokens file to a directory.
         | 
| 149 | 
            +
             | 
| 150 | 
            +
                    Args:
         | 
| 151 | 
            +
                        save_directory (`str`):
         | 
| 152 | 
            +
                            The directory in which to save the vocabulary.
         | 
| 153 | 
            +
             | 
| 154 | 
            +
                    Returns:
         | 
| 155 | 
            +
                        `Tuple(str)`: Paths to the files saved.
         | 
| 156 | 
            +
                    """
         | 
| 157 | 
            +
                    if not os.path.isdir(save_directory):
         | 
| 158 | 
            +
                        logger.error(f"Vocabulary path ({save_directory}) should be a directory")
         | 
| 159 | 
            +
                        return
         | 
| 160 | 
            +
                    out_vocab_file = os.path.join(
         | 
| 161 | 
            +
                        save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
         | 
| 162 | 
            +
                    )
         | 
| 163 | 
            +
             | 
| 164 | 
            +
                    if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
         | 
| 165 | 
            +
                        copyfile(self.vocab_file, out_vocab_file)
         | 
| 166 | 
            +
                    elif not os.path.isfile(self.vocab_file):
         | 
| 167 | 
            +
                        with open(out_vocab_file, "wb") as fi:
         | 
| 168 | 
            +
                            content_spiece_model = self.sp_model.serialized_model_proto()
         | 
| 169 | 
            +
                            fi.write(content_spiece_model)
         | 
| 170 | 
            +
             | 
| 171 | 
            +
                    return (out_vocab_file,)
         | 
| 172 | 
            +
             | 
| 173 | 
            +
                def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
         | 
| 174 | 
            +
                    if self.add_bos_token:
         | 
| 175 | 
            +
                        bos_token_ids = [self.bos_token_id]
         | 
| 176 | 
            +
                    else:
         | 
| 177 | 
            +
                        bos_token_ids = []
         | 
| 178 | 
            +
             | 
| 179 | 
            +
                    output = bos_token_ids + token_ids_0
         | 
| 180 | 
            +
             | 
| 181 | 
            +
                    if token_ids_1 is not None:
         | 
| 182 | 
            +
                        output = output + token_ids_1
         | 
| 183 | 
            +
             | 
| 184 | 
            +
                    if self.add_eos_token:
         | 
| 185 | 
            +
                        output = output + [self.eos_token_id]
         | 
| 186 | 
            +
             | 
| 187 | 
            +
                    return output
         | 
| 188 | 
            +
             | 
| 189 | 
            +
                def get_special_tokens_mask(
         | 
| 190 | 
            +
                    self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
         | 
| 191 | 
            +
                ) -> List[int]:
         | 
| 192 | 
            +
                    """
         | 
| 193 | 
            +
                    Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
         | 
| 194 | 
            +
                    special tokens using the tokenizer `prepare_for_model` method.
         | 
| 195 | 
            +
             | 
| 196 | 
            +
                    Args:
         | 
| 197 | 
            +
                        token_ids_0 (`List[int]`):
         | 
| 198 | 
            +
                            List of IDs.
         | 
| 199 | 
            +
                        token_ids_1 (`List[int]`, *optional*):
         | 
| 200 | 
            +
                            Optional second list of IDs for sequence pairs.
         | 
| 201 | 
            +
                        already_has_special_tokens (`bool`, *optional*, defaults to `False`):
         | 
| 202 | 
            +
                            Whether or not the token list is already formatted with special tokens for the model.
         | 
| 203 | 
            +
             | 
| 204 | 
            +
                    Returns:
         | 
| 205 | 
            +
                        `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
         | 
| 206 | 
            +
                    """
         | 
| 207 | 
            +
                    if already_has_special_tokens:
         | 
| 208 | 
            +
                        return super().get_special_tokens_mask(
         | 
| 209 | 
            +
                            token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
         | 
| 210 | 
            +
                        )
         | 
| 211 | 
            +
             | 
| 212 | 
            +
                    if token_ids_1 is None:
         | 
| 213 | 
            +
                        return [1] + ([0] * len(token_ids_0)) + [1]
         | 
| 214 | 
            +
                    return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
         | 
| 215 | 
            +
             | 
| 216 | 
            +
                def create_token_type_ids_from_sequences(
         | 
| 217 | 
            +
                    self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
         | 
| 218 | 
            +
                ) -> List[int]:
         | 
| 219 | 
            +
                    """
         | 
| 220 | 
            +
                    Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
         | 
| 221 | 
            +
                    use of token type ids, therefore a list of zeros is returned.
         | 
| 222 | 
            +
             | 
| 223 | 
            +
                    Args:
         | 
| 224 | 
            +
                        token_ids_0 (`List[int]`):
         | 
| 225 | 
            +
                            List of IDs.
         | 
| 226 | 
            +
                        token_ids_1 (`List[int]`, *optional*):
         | 
| 227 | 
            +
                            Optional second list of IDs for sequence pairs.
         | 
| 228 | 
            +
             | 
| 229 | 
            +
                    Returns:
         | 
| 230 | 
            +
                        `List[int]`: List of zeros.
         | 
| 231 | 
            +
                    """
         | 
| 232 | 
            +
                    eos = [self.eos_token_id]
         | 
| 233 | 
            +
             | 
| 234 | 
            +
                    if token_ids_1 is None:
         | 
| 235 | 
            +
                        return len(token_ids_0 + eos) * [0]
         | 
| 236 | 
            +
                    return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
         | 
    	
        tokenization_internlm2_fast.py
    ADDED
    
    | @@ -0,0 +1,214 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # coding=utf-8
         | 
| 2 | 
            +
            # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
         | 
| 3 | 
            +
            #
         | 
| 4 | 
            +
            # This code is based on transformers/src/transformers/models/llama/tokenization_llama_fast.py
         | 
| 5 | 
            +
            #
         | 
| 6 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 7 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 8 | 
            +
            # You may obtain a copy of the License at
         | 
| 9 | 
            +
            #
         | 
| 10 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 11 | 
            +
            #
         | 
| 12 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 13 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 14 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 15 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 16 | 
            +
            # limitations under the License.
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            """Tokenization Fast class for InternLM."""
         | 
| 19 | 
            +
            import os
         | 
| 20 | 
            +
            from shutil import copyfile
         | 
| 21 | 
            +
            from typing import Any, Dict, Optional, Tuple
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            from tokenizers import processors, decoders, Tokenizer, normalizers
         | 
| 24 | 
            +
            from tokenizers.models import BPE
         | 
| 25 | 
            +
             | 
| 26 | 
            +
            from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
         | 
| 27 | 
            +
            from transformers.utils import logging
         | 
| 28 | 
            +
             | 
| 29 | 
            +
            from transformers.convert_slow_tokenizer import (
         | 
| 30 | 
            +
                SLOW_TO_FAST_CONVERTERS,
         | 
| 31 | 
            +
                SpmConverter,
         | 
| 32 | 
            +
                SentencePieceExtractor,
         | 
| 33 | 
            +
            )
         | 
| 34 | 
            +
             | 
| 35 | 
            +
            from .tokenization_internlm2 import InternLM2Tokenizer
         | 
| 36 | 
            +
             | 
| 37 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 38 | 
            +
             | 
| 39 | 
            +
            VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
         | 
| 40 | 
            +
             | 
| 41 | 
            +
            # Modified from transformers.convert_slow_tokenizer.LlamaConverter
         | 
| 42 | 
            +
            class InternLM2Converter(SpmConverter):
         | 
| 43 | 
            +
                handle_byte_fallback = True
         | 
| 44 | 
            +
             | 
| 45 | 
            +
                def vocab(self, proto):
         | 
| 46 | 
            +
                    vocab = [
         | 
| 47 | 
            +
                        ("<unk>", 0.0),
         | 
| 48 | 
            +
                        ("<s>", 0.0),
         | 
| 49 | 
            +
                        ("</s>", 0.0),
         | 
| 50 | 
            +
                    ]
         | 
| 51 | 
            +
                    vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
         | 
| 52 | 
            +
                    return vocab
         | 
| 53 | 
            +
             | 
| 54 | 
            +
                def unk_id(self, proto):
         | 
| 55 | 
            +
                    unk_id = 0
         | 
| 56 | 
            +
                    return unk_id
         | 
| 57 | 
            +
             | 
| 58 | 
            +
                def decoder(self, replacement, add_prefix_space):
         | 
| 59 | 
            +
                    decoders_sequence = [
         | 
| 60 | 
            +
                        decoders.Replace("▁", " "),
         | 
| 61 | 
            +
                        decoders.ByteFallback(),
         | 
| 62 | 
            +
                        decoders.Fuse(),
         | 
| 63 | 
            +
                    ]
         | 
| 64 | 
            +
                    if self.proto.normalizer_spec.add_dummy_prefix:
         | 
| 65 | 
            +
                        decoders_sequence.append(decoders.Strip(content=" ", left=1))
         | 
| 66 | 
            +
                    return decoders.Sequence(decoders_sequence)
         | 
| 67 | 
            +
             | 
| 68 | 
            +
                def tokenizer(self, proto):
         | 
| 69 | 
            +
                    model_type = proto.trainer_spec.model_type
         | 
| 70 | 
            +
                    vocab_scores = self.vocab(proto)
         | 
| 71 | 
            +
                    # special tokens
         | 
| 72 | 
            +
                    added_tokens = self.original_tokenizer.added_tokens_decoder
         | 
| 73 | 
            +
                    for i in range(len(vocab_scores)):
         | 
| 74 | 
            +
                        piece, score = vocab_scores[i]
         | 
| 75 | 
            +
                        if i in added_tokens:
         | 
| 76 | 
            +
                            vocab_scores[i] = (added_tokens[i].content, score)
         | 
| 77 | 
            +
                    if model_type == 1:
         | 
| 78 | 
            +
                        raise RuntimeError("InternLM2 is supposed to be a BPE model!")
         | 
| 79 | 
            +
             | 
| 80 | 
            +
                    elif model_type == 2:
         | 
| 81 | 
            +
                        _, merges = SentencePieceExtractor(self.original_tokenizer.vocab_file).extract(vocab_scores)
         | 
| 82 | 
            +
                        bpe_vocab = {word: i for i, (word, _score) in enumerate(vocab_scores)}
         | 
| 83 | 
            +
                        tokenizer = Tokenizer(
         | 
| 84 | 
            +
                            BPE(bpe_vocab, merges, unk_token=proto.trainer_spec.unk_piece, fuse_unk=True, byte_fallback=True)
         | 
| 85 | 
            +
                        )
         | 
| 86 | 
            +
                        tokenizer.add_special_tokens(
         | 
| 87 | 
            +
                            [ added_token for index, added_token in added_tokens.items()]
         | 
| 88 | 
            +
                        )
         | 
| 89 | 
            +
                    else:
         | 
| 90 | 
            +
                        raise Exception(
         | 
| 91 | 
            +
                            "You're trying to run a `Unigram` model but you're file was trained with a different algorithm"
         | 
| 92 | 
            +
                        )
         | 
| 93 | 
            +
             | 
| 94 | 
            +
                    return tokenizer
         | 
| 95 | 
            +
             | 
| 96 | 
            +
                def normalizer(self, proto):
         | 
| 97 | 
            +
                    normalizers_list = []
         | 
| 98 | 
            +
                    if proto.normalizer_spec.add_dummy_prefix:
         | 
| 99 | 
            +
                        normalizers_list.append(normalizers.Prepend(prepend="▁"))
         | 
| 100 | 
            +
                    normalizers_list.append(normalizers.Replace(pattern=" ", content="▁"))
         | 
| 101 | 
            +
                    return normalizers.Sequence(normalizers_list)
         | 
| 102 | 
            +
             | 
| 103 | 
            +
                def pre_tokenizer(self, replacement, add_prefix_space):
         | 
| 104 | 
            +
                    return None
         | 
| 105 | 
            +
             | 
| 106 | 
            +
            SLOW_TO_FAST_CONVERTERS["InternLM2Tokenizer"] = InternLM2Converter
         | 
| 107 | 
            +
             | 
| 108 | 
            +
             | 
| 109 | 
            +
            # Modified from transformers.model.llama.tokenization_llama_fast.LlamaTokenizerFast -> InternLM2TokenizerFast
         | 
| 110 | 
            +
            class InternLM2TokenizerFast(PreTrainedTokenizerFast):
         | 
| 111 | 
            +
                vocab_files_names = VOCAB_FILES_NAMES
         | 
| 112 | 
            +
                slow_tokenizer_class = InternLM2Tokenizer
         | 
| 113 | 
            +
                padding_side = "left"
         | 
| 114 | 
            +
                model_input_names = ["input_ids", "attention_mask"]
         | 
| 115 | 
            +
                _auto_class = "AutoTokenizer"
         | 
| 116 | 
            +
             | 
| 117 | 
            +
                def __init__(
         | 
| 118 | 
            +
                    self,
         | 
| 119 | 
            +
                    vocab_file,
         | 
| 120 | 
            +
                    unk_token="<unk>",
         | 
| 121 | 
            +
                    bos_token="<s>",
         | 
| 122 | 
            +
                    eos_token="</s>",
         | 
| 123 | 
            +
                    pad_token="</s>",
         | 
| 124 | 
            +
                    sp_model_kwargs: Optional[Dict[str, Any]] = None,
         | 
| 125 | 
            +
                    add_bos_token=True,
         | 
| 126 | 
            +
                    add_eos_token=False,
         | 
| 127 | 
            +
                    decode_with_prefix_space=False,
         | 
| 128 | 
            +
                    clean_up_tokenization_spaces=False,
         | 
| 129 | 
            +
                    **kwargs,
         | 
| 130 | 
            +
                ):
         | 
| 131 | 
            +
                    super().__init__(
         | 
| 132 | 
            +
                        vocab_file=vocab_file,
         | 
| 133 | 
            +
                        unk_token=unk_token,
         | 
| 134 | 
            +
                        bos_token=bos_token,
         | 
| 135 | 
            +
                        eos_token=eos_token,
         | 
| 136 | 
            +
                        pad_token=pad_token,
         | 
| 137 | 
            +
                        sp_model_kwargs=sp_model_kwargs,
         | 
| 138 | 
            +
                        add_bos_token=add_bos_token,
         | 
| 139 | 
            +
                        add_eos_token=add_eos_token,
         | 
| 140 | 
            +
                        decode_with_prefix_space=decode_with_prefix_space,
         | 
| 141 | 
            +
                        clean_up_tokenization_spaces=clean_up_tokenization_spaces,
         | 
| 142 | 
            +
                        **kwargs,
         | 
| 143 | 
            +
                    )
         | 
| 144 | 
            +
                    self._add_bos_token = add_bos_token
         | 
| 145 | 
            +
                    self._add_eos_token = add_eos_token
         | 
| 146 | 
            +
                    self.update_post_processor()
         | 
| 147 | 
            +
                    self.vocab_file = vocab_file
         | 
| 148 | 
            +
             | 
| 149 | 
            +
                @property
         | 
| 150 | 
            +
                def can_save_slow_tokenizer(self) -> bool:
         | 
| 151 | 
            +
                    return os.path.isfile(self.vocab_file) if self.vocab_file else False
         | 
| 152 | 
            +
             | 
| 153 | 
            +
                def update_post_processor(self):
         | 
| 154 | 
            +
                    """
         | 
| 155 | 
            +
                    Updates the underlying post processor with the current `bos_token` and `eos_token`.
         | 
| 156 | 
            +
                    """
         | 
| 157 | 
            +
                    bos = self.bos_token
         | 
| 158 | 
            +
                    bos_token_id = self.bos_token_id
         | 
| 159 | 
            +
                    if bos is None and self.add_bos_token:
         | 
| 160 | 
            +
                        raise ValueError("add_bos_token = True but bos_token = None")
         | 
| 161 | 
            +
             | 
| 162 | 
            +
                    eos = self.eos_token
         | 
| 163 | 
            +
                    eos_token_id = self.eos_token_id
         | 
| 164 | 
            +
                    if eos is None and self.add_eos_token:
         | 
| 165 | 
            +
                        raise ValueError("add_eos_token = True but eos_token = None")
         | 
| 166 | 
            +
             | 
| 167 | 
            +
                    single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
         | 
| 168 | 
            +
                    pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
         | 
| 169 | 
            +
             | 
| 170 | 
            +
                    special_tokens = []
         | 
| 171 | 
            +
                    if self.add_bos_token:
         | 
| 172 | 
            +
                        special_tokens.append((bos, bos_token_id))
         | 
| 173 | 
            +
                    if self.add_eos_token:
         | 
| 174 | 
            +
                        special_tokens.append((eos, eos_token_id))
         | 
| 175 | 
            +
                    self._tokenizer.post_processor = processors.TemplateProcessing(
         | 
| 176 | 
            +
                        single=single, pair=pair, special_tokens=special_tokens
         | 
| 177 | 
            +
                    )
         | 
| 178 | 
            +
             | 
| 179 | 
            +
                @property
         | 
| 180 | 
            +
                def add_eos_token(self):
         | 
| 181 | 
            +
                    return self._add_eos_token
         | 
| 182 | 
            +
             | 
| 183 | 
            +
                @property
         | 
| 184 | 
            +
                def add_bos_token(self):
         | 
| 185 | 
            +
                    return self._add_bos_token
         | 
| 186 | 
            +
             | 
| 187 | 
            +
                @add_eos_token.setter
         | 
| 188 | 
            +
                def add_eos_token(self, value):
         | 
| 189 | 
            +
                    self._add_eos_token = value
         | 
| 190 | 
            +
                    self.update_post_processor()
         | 
| 191 | 
            +
             | 
| 192 | 
            +
                @add_bos_token.setter
         | 
| 193 | 
            +
                def add_bos_token(self, value):
         | 
| 194 | 
            +
                    self._add_bos_token = value
         | 
| 195 | 
            +
                    self.update_post_processor()
         | 
| 196 | 
            +
             | 
| 197 | 
            +
                def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
         | 
| 198 | 
            +
                    if not self.can_save_slow_tokenizer:
         | 
| 199 | 
            +
                        raise ValueError(
         | 
| 200 | 
            +
                            "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
         | 
| 201 | 
            +
                            "tokenizer."
         | 
| 202 | 
            +
                        )
         | 
| 203 | 
            +
             | 
| 204 | 
            +
                    if not os.path.isdir(save_directory):
         | 
| 205 | 
            +
                        logger.error(f"Vocabulary path ({save_directory}) should be a directory")
         | 
| 206 | 
            +
                        return
         | 
| 207 | 
            +
                    out_vocab_file = os.path.join(
         | 
| 208 | 
            +
                        save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
         | 
| 209 | 
            +
                    )
         | 
| 210 | 
            +
             | 
| 211 | 
            +
                    if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
         | 
| 212 | 
            +
                        copyfile(self.vocab_file, out_vocab_file)
         | 
| 213 | 
            +
             | 
| 214 | 
            +
                    return (out_vocab_file,)
         | 
    	
        tokenizer.json
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:70a943188e9095abfad4aaa538c549de1b87aa819af4367904c18d9b9c802291
         | 
| 3 | 
            +
            size 10541553
         | 
    	
        tokenizer.model
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:f868398fc4e05ee1e8aeba95ddf18ddcc45b8bce55d5093bead5bbf80429b48b
         | 
| 3 | 
            +
            size 1477754
         | 
    	
        tokenizer_config.json
    ADDED
    
    | @@ -0,0 +1,121 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "add_bos_token": true,
         | 
| 3 | 
            +
              "add_eos_token": false,
         | 
| 4 | 
            +
              "added_tokens_decoder": {
         | 
| 5 | 
            +
                "0": {
         | 
| 6 | 
            +
                  "content": "<unk>",
         | 
| 7 | 
            +
                  "lstrip": false,
         | 
| 8 | 
            +
                  "normalized": false,
         | 
| 9 | 
            +
                  "rstrip": false,
         | 
| 10 | 
            +
                  "single_word": false,
         | 
| 11 | 
            +
                  "special": true
         | 
| 12 | 
            +
                },
         | 
| 13 | 
            +
                "1": {
         | 
| 14 | 
            +
                  "content": "<s>",
         | 
| 15 | 
            +
                  "lstrip": false,
         | 
| 16 | 
            +
                  "normalized": false,
         | 
| 17 | 
            +
                  "rstrip": false,
         | 
| 18 | 
            +
                  "single_word": false,
         | 
| 19 | 
            +
                  "special": true
         | 
| 20 | 
            +
                },
         | 
| 21 | 
            +
                "2": {
         | 
| 22 | 
            +
                  "content": "</s>",
         | 
| 23 | 
            +
                  "lstrip": false,
         | 
| 24 | 
            +
                  "normalized": false,
         | 
| 25 | 
            +
                  "rstrip": false,
         | 
| 26 | 
            +
                  "single_word": false,
         | 
| 27 | 
            +
                  "special": true
         | 
| 28 | 
            +
                },
         | 
| 29 | 
            +
                "92397": {
         | 
| 30 | 
            +
                  "content": "<|reward|>",
         | 
| 31 | 
            +
                  "lstrip": false,
         | 
| 32 | 
            +
                  "normalized": false,
         | 
| 33 | 
            +
                  "rstrip": false,
         | 
| 34 | 
            +
                  "single_word": false,
         | 
| 35 | 
            +
                  "special": true
         | 
| 36 | 
            +
                },
         | 
| 37 | 
            +
                "92538": {
         | 
| 38 | 
            +
                  "content": "<|plugin|>",
         | 
| 39 | 
            +
                  "lstrip": false,
         | 
| 40 | 
            +
                  "normalized": false,
         | 
| 41 | 
            +
                  "rstrip": false,
         | 
| 42 | 
            +
                  "single_word": false,
         | 
| 43 | 
            +
                  "special": true
         | 
| 44 | 
            +
                },
         | 
| 45 | 
            +
                "92539": {
         | 
| 46 | 
            +
                  "content": "<|interpreter|>",
         | 
| 47 | 
            +
                  "lstrip": false,
         | 
| 48 | 
            +
                  "normalized": false,
         | 
| 49 | 
            +
                  "rstrip": false,
         | 
| 50 | 
            +
                  "single_word": false,
         | 
| 51 | 
            +
                  "special": true
         | 
| 52 | 
            +
                },
         | 
| 53 | 
            +
                "92540": {
         | 
| 54 | 
            +
                  "content": "<|action_end|>",
         | 
| 55 | 
            +
                  "lstrip": false,
         | 
| 56 | 
            +
                  "normalized": false,
         | 
| 57 | 
            +
                  "rstrip": false,
         | 
| 58 | 
            +
                  "single_word": false,
         | 
| 59 | 
            +
                  "special": true
         | 
| 60 | 
            +
                },
         | 
| 61 | 
            +
                "92541": {
         | 
| 62 | 
            +
                  "content": "<|action_start|>",
         | 
| 63 | 
            +
                  "lstrip": false,
         | 
| 64 | 
            +
                  "normalized": false,
         | 
| 65 | 
            +
                  "rstrip": false,
         | 
| 66 | 
            +
                  "single_word": false,
         | 
| 67 | 
            +
                  "special": true
         | 
| 68 | 
            +
                },
         | 
| 69 | 
            +
                "92542": {
         | 
| 70 | 
            +
                  "content": "<|im_end|>",
         | 
| 71 | 
            +
                  "lstrip": false,
         | 
| 72 | 
            +
                  "normalized": false,
         | 
| 73 | 
            +
                  "rstrip": false,
         | 
| 74 | 
            +
                  "single_word": false,
         | 
| 75 | 
            +
                  "special": true
         | 
| 76 | 
            +
                },
         | 
| 77 | 
            +
                "92543": {
         | 
| 78 | 
            +
                  "content": "<|im_start|>",
         | 
| 79 | 
            +
                  "lstrip": false,
         | 
| 80 | 
            +
                  "normalized": false,
         | 
| 81 | 
            +
                  "rstrip": false,
         | 
| 82 | 
            +
                  "single_word": false,
         | 
| 83 | 
            +
                  "special": true
         | 
| 84 | 
            +
                },
         | 
| 85 | 
            +
                "92527": {
         | 
| 86 | 
            +
                  "content": "[UNUSED_TOKEN_130]",
         | 
| 87 | 
            +
                  "single_word": false,
         | 
| 88 | 
            +
                  "lstrip": false,
         | 
| 89 | 
            +
                  "rstrip": false,
         | 
| 90 | 
            +
                  "normalized": false,
         | 
| 91 | 
            +
                  "special": true
         | 
| 92 | 
            +
                }
         | 
| 93 | 
            +
              },
         | 
| 94 | 
            +
              "additional_special_tokens": [
         | 
| 95 | 
            +
                "<|im_start|>",
         | 
| 96 | 
            +
                "<|im_end|>",
         | 
| 97 | 
            +
                "<|action_start|>",
         | 
| 98 | 
            +
                "<|action_end|>",
         | 
| 99 | 
            +
                "<|interpreter|>",
         | 
| 100 | 
            +
                "<|plugin|>",
         | 
| 101 | 
            +
                "<|reward|>",
         | 
| 102 | 
            +
                "[UNUSED_TOKEN_130]"
         | 
| 103 | 
            +
              ],
         | 
| 104 | 
            +
              "auto_map": {
         | 
| 105 | 
            +
                "AutoTokenizer": [
         | 
| 106 | 
            +
                  "tokenization_internlm2.InternLM2Tokenizer",
         | 
| 107 | 
            +
                  "tokenization_internlm2_fast.InternLM2TokenizerFast"
         | 
| 108 | 
            +
                ]
         | 
| 109 | 
            +
              },
         | 
| 110 | 
            +
              "bos_token": "<s>",
         | 
| 111 | 
            +
              "clean_up_tokenization_spaces": false,
         | 
| 112 | 
            +
              "decode_with_prefix_space": false,
         | 
| 113 | 
            +
              "eos_token": "</s>",
         | 
| 114 | 
            +
              "extra_special_tokens": {},
         | 
| 115 | 
            +
              "model_max_length": 1000000000000000019884624838656,
         | 
| 116 | 
            +
              "pad_token": "</s>",
         | 
| 117 | 
            +
              "padding_side": "left",
         | 
| 118 | 
            +
              "sp_model_kwargs": null,
         | 
| 119 | 
            +
              "tokenizer_class": "InternLM2Tokenizer",
         | 
| 120 | 
            +
              "unk_token": "<unk>"
         | 
| 121 | 
            +
            }
         | 
    	
        xtuner_config.py
    ADDED
    
    | @@ -0,0 +1,187 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            accumulative_counts = 2
         | 
| 2 | 
            +
            avg_num_per_pack = 5
         | 
| 3 | 
            +
            batch_size = 1
         | 
| 4 | 
            +
            betas = (
         | 
| 5 | 
            +
                0.9,
         | 
| 6 | 
            +
                0.95,
         | 
| 7 | 
            +
            )
         | 
| 8 | 
            +
            custom_hooks = [
         | 
| 9 | 
            +
                dict(
         | 
| 10 | 
            +
                    by_epoch=False,
         | 
| 11 | 
            +
                    interval=200,
         | 
| 12 | 
            +
                    type='xtuner.engine.hooks.DataResumeHook'),
         | 
| 13 | 
            +
                dict(type='xtuner.engine.hooks.VarlenAttnArgsToMessageHubHook'),
         | 
| 14 | 
            +
            ]
         | 
| 15 | 
            +
            data_num = 510000000
         | 
| 16 | 
            +
            data_path = '/cpfs01/shared/alillm_hs/zouyicheng/rm_pretrain/data/train'
         | 
| 17 | 
            +
            dataloader_num_workers = 0
         | 
| 18 | 
            +
            default_hooks = dict(
         | 
| 19 | 
            +
                checkpoint=dict(
         | 
| 20 | 
            +
                    by_epoch=False,
         | 
| 21 | 
            +
                    interval=200,
         | 
| 22 | 
            +
                    max_keep_ckpts=10,
         | 
| 23 | 
            +
                    type='mmengine.hooks.CheckpointHook'),
         | 
| 24 | 
            +
                logger=dict(
         | 
| 25 | 
            +
                    interval=10,
         | 
| 26 | 
            +
                    log_metric_by_epoch=False,
         | 
| 27 | 
            +
                    type='mmengine.hooks.LoggerHook'),
         | 
| 28 | 
            +
                param_scheduler=dict(type='mmengine.hooks.ParamSchedulerHook'),
         | 
| 29 | 
            +
                sampler_seed=dict(type='mmengine.hooks.DistSamplerSeedHook'),
         | 
| 30 | 
            +
                timer=dict(type='mmengine.hooks.IterTimerHook'))
         | 
| 31 | 
            +
            env_cfg = dict(
         | 
| 32 | 
            +
                cudnn_benchmark=False,
         | 
| 33 | 
            +
                dist_cfg=dict(backend='nccl'),
         | 
| 34 | 
            +
                mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
         | 
| 35 | 
            +
            launcher = 'pytorch'
         | 
| 36 | 
            +
            load_from = None
         | 
| 37 | 
            +
            log_level = 'INFO'
         | 
| 38 | 
            +
            log_processor = dict(by_epoch=False)
         | 
| 39 | 
            +
            loss_type = 'ranking'
         | 
| 40 | 
            +
            lr = 1.45e-05
         | 
| 41 | 
            +
            max_epochs = 1
         | 
| 42 | 
            +
            max_length = 16384
         | 
| 43 | 
            +
            max_norm = 1
         | 
| 44 | 
            +
            max_packed_length = 32768
         | 
| 45 | 
            +
            max_response_length = 5120
         | 
| 46 | 
            +
            model = dict(
         | 
| 47 | 
            +
                llm=dict(
         | 
| 48 | 
            +
                    pretrained_model_name_or_path=
         | 
| 49 | 
            +
                    '/cpfs01/shared/alillm_hs/zouyicheng/xtuner/model/internlm2_5-7b',
         | 
| 50 | 
            +
                    trust_remote_code=True,
         | 
| 51 | 
            +
                    type='transformers.AutoModel.from_pretrained'),
         | 
| 52 | 
            +
                loss_type='ranking',
         | 
| 53 | 
            +
                penalty_type='none',
         | 
| 54 | 
            +
                type='xtuner.model.reward.RewardModel',
         | 
| 55 | 
            +
                use_varlen_attn=True)
         | 
| 56 | 
            +
            optim_type = 'torch.optim.AdamW'
         | 
| 57 | 
            +
            optim_wrapper = dict(
         | 
| 58 | 
            +
                optimizer=dict(
         | 
| 59 | 
            +
                    betas=(
         | 
| 60 | 
            +
                        0.9,
         | 
| 61 | 
            +
                        0.95,
         | 
| 62 | 
            +
                    ),
         | 
| 63 | 
            +
                    lr=1.45e-05,
         | 
| 64 | 
            +
                    type='torch.optim.AdamW',
         | 
| 65 | 
            +
                    weight_decay=0),
         | 
| 66 | 
            +
                type='DeepSpeedOptimWrapper')
         | 
| 67 | 
            +
            param_scheduler = [
         | 
| 68 | 
            +
                dict(
         | 
| 69 | 
            +
                    begin=0,
         | 
| 70 | 
            +
                    by_epoch=True,
         | 
| 71 | 
            +
                    convert_to_iter_based=True,
         | 
| 72 | 
            +
                    end=0.03,
         | 
| 73 | 
            +
                    start_factor=1.45e-06,
         | 
| 74 | 
            +
                    type='mmengine.optim.LinearLR'),
         | 
| 75 | 
            +
                dict(
         | 
| 76 | 
            +
                    begin=0.03,
         | 
| 77 | 
            +
                    by_epoch=True,
         | 
| 78 | 
            +
                    convert_to_iter_based=True,
         | 
| 79 | 
            +
                    end=1,
         | 
| 80 | 
            +
                    eta_min=1.45e-06,
         | 
| 81 | 
            +
                    type='mmengine.optim.CosineAnnealingLR'),
         | 
| 82 | 
            +
            ]
         | 
| 83 | 
            +
            penalty_type = 'none'
         | 
| 84 | 
            +
            pretrained_model_name_or_path = '/cpfs01/shared/alillm_hs/zouyicheng/xtuner/model/internlm2_5-7b'
         | 
| 85 | 
            +
            randomness = dict(deterministic=False, seed=None)
         | 
| 86 | 
            +
            resume = True
         | 
| 87 | 
            +
            reward_token_id = 92527
         | 
| 88 | 
            +
            runner_type = 'FlexibleRunner'
         | 
| 89 | 
            +
            sampler = 'mmengine.dataset.DefaultSampler'
         | 
| 90 | 
            +
            save_steps = 200
         | 
| 91 | 
            +
            save_total_limit = 10
         | 
| 92 | 
            +
            sequence_parallel_size = 1
         | 
| 93 | 
            +
            strategy = dict(
         | 
| 94 | 
            +
                config=dict(
         | 
| 95 | 
            +
                    bf16=dict(enabled=True),
         | 
| 96 | 
            +
                    fp16=dict(enabled=False, initial_scale_power=16),
         | 
| 97 | 
            +
                    gradient_accumulation_steps='auto',
         | 
| 98 | 
            +
                    gradient_clipping='auto',
         | 
| 99 | 
            +
                    train_micro_batch_size_per_gpu='auto',
         | 
| 100 | 
            +
                    zero_allow_untested_optimizer=True,
         | 
| 101 | 
            +
                    zero_force_ds_cpu_optimizer=False,
         | 
| 102 | 
            +
                    zero_optimization=dict(overlap_comm=True, stage=1)),
         | 
| 103 | 
            +
                exclude_frozen_parameters=True,
         | 
| 104 | 
            +
                gradient_accumulation_steps=2,
         | 
| 105 | 
            +
                gradient_clipping=1,
         | 
| 106 | 
            +
                sequence_parallel_size=1,
         | 
| 107 | 
            +
                train_micro_batch_size_per_gpu=1,
         | 
| 108 | 
            +
                type='xtuner.engine.DeepSpeedStrategy')
         | 
| 109 | 
            +
            tokenizer = dict(
         | 
| 110 | 
            +
                padding_side='left',
         | 
| 111 | 
            +
                pretrained_model_name_or_path=
         | 
| 112 | 
            +
                '/cpfs01/shared/alillm_hs/zouyicheng/xtuner/model/internlm2_5-7b',
         | 
| 113 | 
            +
                trust_remote_code=True,
         | 
| 114 | 
            +
                type='transformers.AutoTokenizer.from_pretrained')
         | 
| 115 | 
            +
            train_cfg = dict(max_epochs=1, type='xtuner.engine.runner.TrainLoop')
         | 
| 116 | 
            +
            train_dataloader = dict(
         | 
| 117 | 
            +
                batch_size=1,
         | 
| 118 | 
            +
                collate_fn=dict(
         | 
| 119 | 
            +
                    type=
         | 
| 120 | 
            +
                    'xtuner.dataset.collate_fns.preference_collate_fn.preference_collate_fn',
         | 
| 121 | 
            +
                    use_varlen_attn=True),
         | 
| 122 | 
            +
                dataset=dict(
         | 
| 123 | 
            +
                    avg_num_per_pack=5,
         | 
| 124 | 
            +
                    data_num=510000000,
         | 
| 125 | 
            +
                    dataset=dict(
         | 
| 126 | 
            +
                        path='/cpfs01/shared/alillm_hs/zouyicheng/rm_pretrain/data/train',
         | 
| 127 | 
            +
                        streaming=True,
         | 
| 128 | 
            +
                        type='datasets.load_dataset'),
         | 
| 129 | 
            +
                    dataset_map_fn=None,
         | 
| 130 | 
            +
                    if_pretrain=True,
         | 
| 131 | 
            +
                    is_dpo=False,
         | 
| 132 | 
            +
                    is_reward=True,
         | 
| 133 | 
            +
                    max_length=16384,
         | 
| 134 | 
            +
                    max_packed_length=32768,
         | 
| 135 | 
            +
                    max_response_length=5120,
         | 
| 136 | 
            +
                    num_proc=32,
         | 
| 137 | 
            +
                    reward_token_id=92527,
         | 
| 138 | 
            +
                    shuffle_before_pack=True,
         | 
| 139 | 
            +
                    tokenizer=dict(
         | 
| 140 | 
            +
                        padding_side='left',
         | 
| 141 | 
            +
                        pretrained_model_name_or_path=
         | 
| 142 | 
            +
                        '/cpfs01/shared/alillm_hs/zouyicheng/xtuner/model/internlm2_5-7b',
         | 
| 143 | 
            +
                        trust_remote_code=True,
         | 
| 144 | 
            +
                        type='transformers.AutoTokenizer.from_pretrained'),
         | 
| 145 | 
            +
                    type=
         | 
| 146 | 
            +
                    'xtuner.dataset.preference_dataset.build_preference_dataset_stream',
         | 
| 147 | 
            +
                    use_varlen_attn=True,
         | 
| 148 | 
            +
                    work_dir_name=
         | 
| 149 | 
            +
                    'RM_PT_internlm2_5_7b_DATA_510m_single_mix_Node_57_LR_1_45e_5'),
         | 
| 150 | 
            +
                drop_last=True,
         | 
| 151 | 
            +
                num_workers=0)
         | 
| 152 | 
            +
            train_dataset = dict(
         | 
| 153 | 
            +
                avg_num_per_pack=5,
         | 
| 154 | 
            +
                data_num=510000000,
         | 
| 155 | 
            +
                dataset=dict(
         | 
| 156 | 
            +
                    path='/cpfs01/shared/alillm_hs/zouyicheng/rm_pretrain/data/train',
         | 
| 157 | 
            +
                    streaming=True,
         | 
| 158 | 
            +
                    type='datasets.load_dataset'),
         | 
| 159 | 
            +
                dataset_map_fn=None,
         | 
| 160 | 
            +
                if_pretrain=True,
         | 
| 161 | 
            +
                is_dpo=False,
         | 
| 162 | 
            +
                is_reward=True,
         | 
| 163 | 
            +
                max_length=16384,
         | 
| 164 | 
            +
                max_packed_length=32768,
         | 
| 165 | 
            +
                max_response_length=5120,
         | 
| 166 | 
            +
                num_proc=32,
         | 
| 167 | 
            +
                reward_token_id=92527,
         | 
| 168 | 
            +
                shuffle_before_pack=True,
         | 
| 169 | 
            +
                tokenizer=dict(
         | 
| 170 | 
            +
                    padding_side='left',
         | 
| 171 | 
            +
                    pretrained_model_name_or_path=
         | 
| 172 | 
            +
                    '/cpfs01/shared/alillm_hs/zouyicheng/xtuner/model/internlm2_5-7b',
         | 
| 173 | 
            +
                    trust_remote_code=True,
         | 
| 174 | 
            +
                    type='transformers.AutoTokenizer.from_pretrained'),
         | 
| 175 | 
            +
                type='xtuner.dataset.preference_dataset.build_preference_dataset_stream',
         | 
| 176 | 
            +
                use_varlen_attn=True,
         | 
| 177 | 
            +
                work_dir_name='RM_PT_internlm2_5_7b_DATA_510m_single_mix_Node_57_LR_1_45e_5'
         | 
| 178 | 
            +
            )
         | 
| 179 | 
            +
            use_varlen_attn = True
         | 
| 180 | 
            +
            visualizer = dict(
         | 
| 181 | 
            +
                type='mmengine.visualization.Visualizer',
         | 
| 182 | 
            +
                vis_backends=[
         | 
| 183 | 
            +
                    dict(type='mmengine.visualization.TensorboardVisBackend'),
         | 
| 184 | 
            +
                ])
         | 
| 185 | 
            +
            warmup_ratio = 0.03
         | 
| 186 | 
            +
            weight_decay = 0
         | 
| 187 | 
            +
            work_dir = './work_dirs/RM_PT_internlm2_5_7b_DATA_510m_single_mix_Node_57_LR_1_45e_5'
         | 
