--- library_name: peft license: gemma base_model: unsloth/gemma-2-2b-it tags: - axolotl - generated_from_trainer model-index: - name: f046b196-8d6b-4d6b-a211-19a4d9950253 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/gemma-2-2b-it bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 31a2d8dd6e6c2b6c_train_data.json ds_type: json format: custom path: /workspace/input_data/31a2d8dd6e6c2b6c_train_data.json type: field_instruction: question field_output: os_answer format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: 1 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: true hub_model_id: infogep/f046b196-8d6b-4d6b-a211-19a4d9950253 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 30 micro_batch_size: 4 mlflow_experiment_name: /tmp/31a2d8dd6e6c2b6c_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: ffa033b7-eb43-47a3-82de-1810ade04546 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: ffa033b7-eb43-47a3-82de-1810ade04546 warmup_steps: 5 weight_decay: 0.0 xformers_attention: true ```

# f046b196-8d6b-4d6b-a211-19a4d9950253 This model is a fine-tuned version of [unsloth/gemma-2-2b-it](https://huggingface.co/unsloth/gemma-2-2b-it) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.6204 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0007 | 1 | 3.4129 | | 1.4868 | 0.0036 | 5 | 3.3910 | | 1.497 | 0.0071 | 10 | 2.9595 | | 1.6017 | 0.0107 | 15 | 2.7011 | | 1.6029 | 0.0142 | 20 | 2.6510 | | 1.7973 | 0.0178 | 25 | 2.6260 | | 2.869 | 0.0214 | 30 | 2.6204 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1