import torch from transformers import RoFormerForMaskedLM class RoFormerForSparseEmbeddingV2(RoFormerForMaskedLM): def forward(self, input_ids, attention_mask, return_sparse=False): logits = super().forward(input_ids, attention_mask)['logits'] # [B,L,V] token_mask = (1 - attention_mask.unsqueeze(-1)) * -1e4 # [B,L,1] token_mask[:, 0, :] = -1e4 last_ind = torch.sum(attention_mask, -1, keepdim=True).unsqueeze(-1) - 1 # [B,1,1] token_mask = torch.scatter(token_mask, -2, last_ind, -1e4) logits = logits + token_mask emb = torch.log(1 + torch.max(torch.relu(logits), dim=-2).values) # [B,V] if return_sparse: emb = emb.to_sparse() return emb