Update README.md
Browse files- .gitattributes +1 -0
- Ling-lite-1.5-2507-benchmarks.png +3 -0
- README.md +92 -3
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
Ling-lite-1.5-2507-benchmarks.png filter=lfs diff=lfs merge=lfs -text
|
Ling-lite-1.5-2507-benchmarks.png
ADDED
![]() |
Git LFS Details
|
README.md
CHANGED
@@ -1,3 +1,92 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
pipeline_tag: text-generation
|
4 |
+
library_name: transformers
|
5 |
+
---
|
6 |
+
|
7 |
+
# Ling-lite-1.5-2507
|
8 |
+
|
9 |
+
<p align="center"><img src="https://huggingface.co/inclusionAI/Ling-lite/resolve/main/ant-bailing.png" width="100"/></p>
|
10 |
+
|
11 |
+
<p align="center">🤗 <a href="https://huggingface.co/inclusionAI/Ling-lite-1.5-2507">Hugging Face</a>| 🤖 <a href="https://www.modelscope.cn/models/inclusionAI/Ling-lite-1.5-2507">ModelScope</a>
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
## Model Overview
|
16 |
+
We are excited to introduce **Ling-lite-1.5-2507**, the latest version of our highly capable Ling-lite-1.5 model.
|
17 |
+
|
18 |
+
Ling-lite-1.5-2507 boasts 16.8 billion parameters with 2.75 billion activated parameters, which demonstrates significant improvements over previous versions across professional knowledge assessments, logical reasoning evaluations, and coding capability benchmarks.
|
19 |
+
|
20 |
+
<p align="center">
|
21 |
+
<img width="80%" src="Ling-lite-1.5-2507-benchmarks.png">
|
22 |
+
</p>
|
23 |
+
|
24 |
+
## Key Features
|
25 |
+
As the flagship model of our Lite series, Ling-lite-1.5-2507 features two major enhancements:
|
26 |
+
|
27 |
+
* **Smarter and More Efficient Reasoning**
|
28 |
+
For straightforward inquiries, the model generates concise and direct responses. When confronting complex challenges, it exhibits advanced problem-solving prowess by systematically decomposing problems, integrating a sophisticated reflective mechanism, and producing elaborate reasoning traces to achieve accurate solutions through an inherently efficient and integrated reasoning process.
|
29 |
+
|
30 |
+
* **Enhanced Human-Aligned Subjectivity**
|
31 |
+
The model delivers well-structured and coherent responses, demonstrating profound cognitive depth in subjective and open-ended tasks. This leads to a strong alignment with human preferences concerning response organization and conceptual richness.
|
32 |
+
|
33 |
+
|
34 |
+
## Quickstart
|
35 |
+
### 🤗 Hugging Face Transformers
|
36 |
+
|
37 |
+
Here is a code snippet to show you how to use the chat model with `transformers`:
|
38 |
+
|
39 |
+
```python
|
40 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
41 |
+
|
42 |
+
model_name = "inclusionAI/Ling-lite-1.5-2507"
|
43 |
+
|
44 |
+
model = AutoModelForCausalLM.from_pretrained(
|
45 |
+
model_name,
|
46 |
+
torch_dtype="auto",
|
47 |
+
device_map="auto"
|
48 |
+
)
|
49 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
50 |
+
|
51 |
+
prompt = "Give me a short introduction to large language models."
|
52 |
+
messages = [
|
53 |
+
{"role": "system", "content": "You are Ling, an assistant created by inclusionAI"},
|
54 |
+
{"role": "user", "content": prompt}
|
55 |
+
]
|
56 |
+
text = tokenizer.apply_chat_template(
|
57 |
+
messages,
|
58 |
+
tokenize=False,
|
59 |
+
add_generation_prompt=True
|
60 |
+
)
|
61 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
62 |
+
|
63 |
+
generated_ids = model.generate(
|
64 |
+
**model_inputs,
|
65 |
+
max_new_tokens=512
|
66 |
+
)
|
67 |
+
generated_ids = [
|
68 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
69 |
+
]
|
70 |
+
|
71 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
72 |
+
```
|
73 |
+
|
74 |
+
## Deployment
|
75 |
+
|
76 |
+
Please refer to [Github](https://github.com/inclusionAI/Ling/blob/master/README.md)
|
77 |
+
|
78 |
+
## License
|
79 |
+
This code repository is licensed under [the MIT License](https://huggingface.co/inclusionAI/Ling-lite/blob/main/LICENCE).
|
80 |
+
|
81 |
+
## Citation
|
82 |
+
|
83 |
+
If you find our work helpful, feel free to give us a cite.
|
84 |
+
|
85 |
+
```
|
86 |
+
@article{ling,
|
87 |
+
title = {Every FLOP Counts: Scaling a 300B Mixture-of-Experts LING LLM without Premium GPUs},
|
88 |
+
author = {Ling Team},
|
89 |
+
journal = {arXiv preprint arXiv:2503.05139},
|
90 |
+
year = {2025}
|
91 |
+
}
|
92 |
+
```
|