Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,72 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
base_model:
|
6 |
+
- google-bert/bert-base-cased
|
7 |
+
tags:
|
8 |
+
- genderization
|
9 |
+
- text-classification
|
10 |
+
- prediction
|
11 |
+
---
|
12 |
+
|
13 |
+
# Gender Classification by Name
|
14 |
+
|
15 |
+
### Model Details
|
16 |
+
- **Model Name**: Genderize
|
17 |
+
- **Developed By**: Imran Ali
|
18 |
+
- **Model Type**: Text Classification
|
19 |
+
- **Language**: English
|
20 |
+
- **License**: MIT
|
21 |
+
|
22 |
+
### Description
|
23 |
+
This model classifies gender based on the input name. It uses a pre-trained BERT model as the base and has been fine-tuned on a dataset of names and their associated genders.
|
24 |
+
|
25 |
+
### Training Details
|
26 |
+
- **Training Data**: Dataset of names and genders (e.g., Dannel gender-name dataset)
|
27 |
+
- **Training Procedure**: Fine-tuned using BERT model with a classification head
|
28 |
+
- **Training Hyperparameters**:
|
29 |
+
- Batch size: 8
|
30 |
+
- Gradient accumulation steps: 1
|
31 |
+
- learning_rate: 2e-5
|
32 |
+
- Total steps: 20,005
|
33 |
+
- Number of trainable parameters: 109,483,778 (1.9M)
|
34 |
+
|
35 |
+
### Evaluation
|
36 |
+
- **Testing Data**: Split from the training dataset
|
37 |
+
- **Metrics**: Accuracy, Precision, Recall, F1 Score
|
38 |
+
|
39 |
+
### Uses
|
40 |
+
- **Direct Use**: Classifying the gender of a given name
|
41 |
+
- **Downstream Use**: Enhancing applications that require gender identification based on names (e.g., personalized marketing, user profiling)
|
42 |
+
- **Out-of-Scope Use**: Using the model for purposes other than gender classification without proper validation
|
43 |
+
|
44 |
+
### Bias, Risks, and Limitations
|
45 |
+
- **Bias**: The model may reflect biases present in the training data. It is important to validate its performance across diverse datasets.
|
46 |
+
- **Risks**: Misclassification can occur, especially for names that are unisex or less common.
|
47 |
+
- **Limitations**: The model's accuracy may vary depending on the cultural and linguistic context of the names.
|
48 |
+
|
49 |
+
### Recommendations
|
50 |
+
- Users should be aware of the potential biases and limitations of the model.
|
51 |
+
- Further validation is recommended for specific use cases and datasets.
|
52 |
+
|
53 |
+
### How to Get Started with the Model
|
54 |
+
```python
|
55 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
56 |
+
|
57 |
+
# Load the model and tokenizer from the Hub
|
58 |
+
model_name = "imranali291/genderize"
|
59 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
60 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
61 |
+
|
62 |
+
# Example inference function
|
63 |
+
def predict_gender(name):
|
64 |
+
inputs = tokenizer(name, return_tensors="pt", padding=True, truncation=True, max_length=32)
|
65 |
+
outputs = model(**inputs)
|
66 |
+
predicted_label = outputs.logits.argmax(dim=-1).item()
|
67 |
+
return label_encoder.inverse_transform([predicted_label])[0]
|
68 |
+
|
69 |
+
print(predict_gender("Alex")) # Example output: 'M'
|
70 |
+
print(predict_gender("Maria")) # Example output: 'F'
|
71 |
+
```
|
72 |
+
|