File size: 4,844 Bytes
803c68c bedbb17 803c68c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os.path as op
import yaml
from yacs.config import CfgNode as CN
#from config import comm
import comm
_C = CN()
_C.BASE = ['']
_C.NAME = ''
_C.DATA_DIR = ''
_C.DIST_BACKEND = 'nccl'
_C.GPUS = (0,)
# _C.LOG_DIR = ''
_C.MULTIPROCESSING_DISTRIBUTED = True
_C.OUTPUT_DIR = ''
_C.PIN_MEMORY = True
_C.PRINT_FREQ = 20
_C.RANK = 0
_C.VERBOSE = True
_C.WORKERS = 4
_C.MODEL_SUMMARY = False
_C.AMP = CN()
_C.AMP.ENABLED = False
_C.AMP.MEMORY_FORMAT = 'nchw'
# Cudnn related params
_C.CUDNN = CN()
_C.CUDNN.BENCHMARK = True
_C.CUDNN.DETERMINISTIC = False
_C.CUDNN.ENABLED = True
# common params for NETWORK
_C.MODEL = CN()
_C.MODEL.NAME = 'cls_hrnet'
_C.MODEL.INIT_WEIGHTS = True
_C.MODEL.PRETRAINED = ''
_C.MODEL.PRETRAINED_LAYERS = ['*']
_C.MODEL.NUM_CLASSES = 1000
_C.MODEL.SPEC = CN(new_allowed=True)
_C.LOSS = CN(new_allowed=True)
_C.LOSS.LABEL_SMOOTHING = 0.0
_C.LOSS.LOSS = 'softmax'
# DATASET related params
_C.DATASET = CN()
_C.DATASET.ROOT = ''
_C.DATASET.DATASET = 'imagenet'
_C.DATASET.TRAIN_SET = 'train'
_C.DATASET.TEST_SET = 'val'
_C.DATASET.DATA_FORMAT = 'jpg'
_C.DATASET.LABELMAP = ''
_C.DATASET.TRAIN_TSV_LIST = []
_C.DATASET.TEST_TSV_LIST = []
_C.DATASET.SAMPLER = 'default'
_C.DATASET.TARGET_SIZE = -1
# training data augmentation
_C.INPUT = CN()
_C.INPUT.MEAN = [0.485, 0.456, 0.406]
_C.INPUT.STD = [0.229, 0.224, 0.225]
# data augmentation
_C.AUG = CN()
_C.AUG.SCALE = (0.08, 1.0)
_C.AUG.RATIO = (3.0/4.0, 4.0/3.0)
_C.AUG.COLOR_JITTER = [0.4, 0.4, 0.4, 0.1, 0.0]
_C.AUG.GRAY_SCALE = 0.0
_C.AUG.GAUSSIAN_BLUR = 0.0
_C.AUG.DROPBLOCK_LAYERS = [3, 4]
_C.AUG.DROPBLOCK_KEEP_PROB = 1.0
_C.AUG.DROPBLOCK_BLOCK_SIZE = 7
_C.AUG.MIXUP_PROB = 0.0
_C.AUG.MIXUP = 0.0
_C.AUG.MIXCUT = 0.0
_C.AUG.MIXCUT_MINMAX = []
_C.AUG.MIXUP_SWITCH_PROB = 0.5
_C.AUG.MIXUP_MODE = 'batch'
_C.AUG.MIXCUT_AND_MIXUP = False
_C.AUG.INTERPOLATION = 2
_C.AUG.TIMM_AUG = CN(new_allowed=True)
_C.AUG.TIMM_AUG.USE_LOADER = False
_C.AUG.TIMM_AUG.USE_TRANSFORM = False
# train
_C.TRAIN = CN()
_C.TRAIN.AUTO_RESUME = True
_C.TRAIN.CHECKPOINT = ''
_C.TRAIN.LR_SCHEDULER = CN(new_allowed=True)
_C.TRAIN.SCALE_LR = True
_C.TRAIN.LR = 0.001
_C.TRAIN.OPTIMIZER = 'sgd'
_C.TRAIN.OPTIMIZER_ARGS = CN(new_allowed=True)
_C.TRAIN.MOMENTUM = 0.9
_C.TRAIN.WD = 0.0001
_C.TRAIN.WITHOUT_WD_LIST = []
_C.TRAIN.NESTEROV = True
# for adam
_C.TRAIN.GAMMA1 = 0.99
_C.TRAIN.GAMMA2 = 0.0
_C.TRAIN.BEGIN_EPOCH = 0
_C.TRAIN.END_EPOCH = 100
_C.TRAIN.IMAGE_SIZE = [224, 224] # width * height, ex: 192 * 256
_C.TRAIN.BATCH_SIZE_PER_GPU = 32
_C.TRAIN.SHUFFLE = True
_C.TRAIN.EVAL_BEGIN_EPOCH = 0
_C.TRAIN.DETECT_ANOMALY = False
_C.TRAIN.CLIP_GRAD_NORM = 0.0
_C.TRAIN.SAVE_ALL_MODELS = False
# testing
_C.TEST = CN()
# size of images for each device
_C.TEST.BATCH_SIZE_PER_GPU = 32
_C.TEST.CENTER_CROP = True
_C.TEST.IMAGE_SIZE = [224, 224] # width * height, ex: 192 * 256
_C.TEST.INTERPOLATION = 2
_C.TEST.MODEL_FILE = ''
_C.TEST.REAL_LABELS = False
_C.TEST.VALID_LABELS = ''
_C.FINETUNE = CN()
_C.FINETUNE.FINETUNE = False
_C.FINETUNE.USE_TRAIN_AUG = False
_C.FINETUNE.BASE_LR = 0.003
_C.FINETUNE.BATCH_SIZE = 512
_C.FINETUNE.EVAL_EVERY = 3000
_C.FINETUNE.TRAIN_MODE = True
# _C.FINETUNE.MODEL_FILE = ''
_C.FINETUNE.FROZEN_LAYERS = []
_C.FINETUNE.LR_SCHEDULER = CN(new_allowed=True)
_C.FINETUNE.LR_SCHEDULER.DECAY_TYPE = 'step'
# debug
_C.DEBUG = CN()
_C.DEBUG.DEBUG = False
def _update_config_from_file(config, cfg_file):
config.defrost()
with open(cfg_file, 'r') as f:
yaml_cfg = yaml.load(f, Loader=yaml.FullLoader)
for cfg in yaml_cfg.setdefault('BASE', ['']):
if cfg:
_update_config_from_file(
config, op.join(op.dirname(cfg_file), cfg)
)
print('=> merge config from {}'.format(cfg_file))
config.merge_from_file(cfg_file)
config.freeze()
def update_config(config, args):
_update_config_from_file(config, args.cfg)
config.defrost()
config.merge_from_list(args.opts)
if config.TRAIN.SCALE_LR:
config.TRAIN.LR *= comm.world_size
file_name, _ = op.splitext(op.basename(args.cfg))
config.NAME = file_name + config.NAME
config.RANK = comm.rank
if 'timm' == config.TRAIN.LR_SCHEDULER.METHOD:
config.TRAIN.LR_SCHEDULER.ARGS.epochs = config.TRAIN.END_EPOCH
if 'timm' == config.TRAIN.OPTIMIZER:
config.TRAIN.OPTIMIZER_ARGS.lr = config.TRAIN.LR
aug = config.AUG
if aug.MIXUP > 0.0 or aug.MIXCUT > 0.0 or aug.MIXCUT_MINMAX:
aug.MIXUP_PROB = 1.0
config.freeze()
def save_config(cfg, path):
if comm.is_main_process():
with open(path, 'w') as f:
f.write(cfg.dump())
if __name__ == '__main__':
import sys
with open(sys.argv[1], 'w') as f:
print(_C, file=f) |