File size: 7,583 Bytes
641df38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
---
license: mit
base_model: croissantllm/CroissantCool-v0.2
tags:
- generated_from_trainer
model-index:
- name: gpfs/workdir/fayssema/models/out_newtok_dataset1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: croissantllm/CroissantCool-v0.2
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizerFast
is_llama_derived_model: true
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
tokens:
- "<|im_start|>"
- "<|im_end|>"
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: manu/dataset_1
split: train
type: sharegpt
chat_template: "chatml"
default_system_message: null
dataset_prepared_path: new_pii_2
val_set_size: 0.05
output_dir: /gpfs/workdir/fayssema/models/out_newtok_dataset1
sequence_len: 2048
sample_packing: false
pad_to_sequence_len: false
adapter:
lora_model_dir:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 2
micro_batch_size: 16
num_epochs: 3
# optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.00003
train_on_inputs: false
group_by_length: false
bf16: auto
fp16: false
tf32: true
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
flash_attn_cross_entropy: false
flash_attn_rms_norm: true
flash_attn_fuse_qkv: false
flash_attn_fuse_mlp: true
warmup_steps: 100
evals_per_epoch: 4
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed: #deepspeed_configs/zero2.json # multi-gpu only
weight_decay: 0.05
fsdp:
fsdp_config:
```
</details><br>
# gpfs/workdir/fayssema/models/out_newtok_dataset1
This model is a fine-tuned version of [croissantllm/CroissantCool-v0.2](https://huggingface.co/croissantllm/CroissantCool-v0.2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0087
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.0845 | 0.0 | 1 | 0.8684 |
| 0.1841 | 0.25 | 73 | 0.0205 |
| 0.2394 | 0.51 | 146 | 0.0134 |
| 0.1685 | 0.76 | 219 | 0.0128 |
| 0.1385 | 1.01 | 292 | 0.0209 |
| 0.1561 | 1.26 | 365 | 0.0128 |
| 0.1352 | 1.52 | 438 | 0.0090 |
| 0.162 | 1.77 | 511 | 0.0094 |
| 0.0661 | 2.02 | 584 | 0.0085 |
| 0.1344 | 2.27 | 657 | 0.0089 |
| 0.0718 | 2.53 | 730 | 0.0088 |
| 0.0942 | 2.78 | 803 | 0.0087 |
### Framework versions
- Transformers 4.38.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
|