--- library_name: transformers license: cc-by-nc-sa-4.0 base_model: microsoft/layoutlmv3-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-ap5_1 results: [] --- # layoutlmv3-ap5_1 This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0205 - Precision: 0.9333 - Recall: 0.7778 - F1: 0.8485 - Accuracy: 0.9948 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2988 | 11.9048 | 250 | 0.0205 | 0.9333 | 0.7778 | 0.8485 | 0.9948 | | 0.0029 | 23.8095 | 500 | 0.0275 | 0.8929 | 0.6944 | 0.7812 | 0.9931 | | 0.0009 | 35.7143 | 750 | 0.0270 | 0.9 | 0.75 | 0.8182 | 0.9948 | | 0.0007 | 47.6190 | 1000 | 0.0347 | 0.8621 | 0.6944 | 0.7692 | 0.9931 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0