File size: 4,693 Bytes
7436a15 7eea323 7436a15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
from typing import List, Union, Optional
import pypinyin
import torch
from torch import NoneType
from transformers import BertTokenizerFast
class Pinyin2(object):
def __init__(self):
super(Pinyin2, self).__init__()
pho_vocab = ['P']
pho_vocab += [chr(x) for x in range(ord('1'), ord('5') + 1)]
pho_vocab += [chr(x) for x in range(ord('a'), ord('z') + 1)]
pho_vocab += ['U']
assert len(pho_vocab) == 33
self.pho_vocab_size = len(pho_vocab)
self.pho_vocab = {c: idx for idx, c in enumerate(pho_vocab)}
def get_pho_size(self):
return self.pho_vocab_size
@staticmethod
def get_pinyin(c):
if len(c) > 1:
return 'U'
s = pypinyin.pinyin(
c,
style=pypinyin.Style.TONE3,
neutral_tone_with_five=True,
errors=lambda x: ['U' for _ in x],
)[0][0]
if s == 'U':
return s
assert isinstance(s, str)
assert s[-1] in '12345'
s = s[-1] + s[:-1]
return s
def convert(self, chars):
pinyins = list(map(self.get_pinyin, chars))
pinyin_ids = [list(map(self.pho_vocab.get, pinyin)) for pinyin in pinyins]
pinyin_lens = [len(pinyin) for pinyin in pinyins]
pinyin_ids = torch.nn.utils.rnn.pad_sequence(
[torch.tensor(x) for x in pinyin_ids],
batch_first=True,
padding_value=0,
)
return pinyin_ids, pinyin_lens
class ReaLiSeTokenizer(BertTokenizerFast):
def __init__(self, **kwargs):
super(ReaLiSeTokenizer, self).__init__(**kwargs)
self.pho2_convertor = Pinyin2()
def __call__(self,
text: Union[str, List[str], List[List[str]]] = None,
text_pair: Union[str, List[str], List[List[str]], NoneType] = None,
text_target: Union[str, List[str], List[List[str]]] = None,
text_pair_target: Union[str, List[str], List[List[str]], NoneType] = None,
add_special_tokens: bool = True,
padding=False,
truncation=None,
max_length: Optional[int] = None,
stride: int = 0,
is_split_into_words: bool = False,
pad_to_multiple_of: Optional[int] = None,
return_tensors=None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True, **kwargs):
encoding = super(ReaLiSeTokenizer, self).__call__(
text=text,
text_pair=text_pair,
text_target=text_target,
text_pair_target=text_pair_target,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
stride=stride,
is_split_into_words=is_split_into_words,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
)
input_ids = encoding['input_ids']
if type(text) == str and return_tensors is None:
input_ids = [input_ids]
pho_idx_list = []
pho_lens_list = []
for ids in input_ids:
chars = self.convert_ids_to_tokens(ids)
pho_idx, pho_lens = self.pho2_convertor.convert(chars)
if return_tensors is None:
pho_idx = pho_idx.tolist()
pho_idx_list.append(pho_idx)
pho_lens_list += pho_lens
pho_idx = pho_idx_list
pho_lens = pho_lens_list
if return_tensors == 'pt':
max_pho_len = max(pho_lens_list)
for i in range(len(pho_idx)):
pho_idx[i] = torch.nn.functional.pad(pho_idx[i], (0, max_pho_len - pho_idx[i].shape[1]))
pho_idx = torch.vstack(pho_idx)
pho_lens = torch.LongTensor(pho_lens)
if type(text) == str and return_tensors is None:
pho_idx = pho_idx[0]
encoding['pho_idx'] = pho_idx
encoding['pho_lens'] = pho_lens
return encoding
|