End of training
Browse files
README.md
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: xlm-roberta-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
model-index:
|
11 |
+
- name: xlm-roberta-base-Multilingual-Sentence-Segmentation-v4
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# xlm-roberta-base-Multilingual-Sentence-Segmentation-v4
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.0074
|
23 |
+
- Precision: 0.9664
|
24 |
+
- Recall: 0.9677
|
25 |
+
- F1: 0.9670
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 2e-05
|
45 |
+
- train_batch_size: 64
|
46 |
+
- eval_batch_size: 64
|
47 |
+
- seed: 42
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- num_epochs: 5
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|
|
56 |
+
| No log | 0.2 | 100 | 0.0125 | 0.9320 | 0.9487 | 0.9403 |
|
57 |
+
| No log | 0.4 | 200 | 0.0099 | 0.9547 | 0.9513 | 0.9530 |
|
58 |
+
| No log | 0.6 | 300 | 0.0092 | 0.9616 | 0.9506 | 0.9561 |
|
59 |
+
| No log | 0.81 | 400 | 0.0083 | 0.9584 | 0.9618 | 0.9601 |
|
60 |
+
| 0.0212 | 1.01 | 500 | 0.0082 | 0.9551 | 0.9642 | 0.9596 |
|
61 |
+
| 0.0212 | 1.21 | 600 | 0.0084 | 0.9630 | 0.9614 | 0.9622 |
|
62 |
+
| 0.0212 | 1.41 | 700 | 0.0079 | 0.9606 | 0.9648 | 0.9627 |
|
63 |
+
| 0.0212 | 1.61 | 800 | 0.0077 | 0.9609 | 0.9661 | 0.9635 |
|
64 |
+
| 0.0212 | 1.81 | 900 | 0.0076 | 0.9623 | 0.9649 | 0.9636 |
|
65 |
+
| 0.0067 | 2.02 | 1000 | 0.0077 | 0.9598 | 0.9689 | 0.9643 |
|
66 |
+
| 0.0067 | 2.22 | 1100 | 0.0075 | 0.9614 | 0.9680 | 0.9647 |
|
67 |
+
| 0.0067 | 2.42 | 1200 | 0.0073 | 0.9626 | 0.9682 | 0.9654 |
|
68 |
+
| 0.0067 | 2.62 | 1300 | 0.0075 | 0.9617 | 0.9692 | 0.9654 |
|
69 |
+
| 0.0067 | 2.82 | 1400 | 0.0073 | 0.9658 | 0.9648 | 0.9653 |
|
70 |
+
| 0.0054 | 3.02 | 1500 | 0.0076 | 0.9656 | 0.9663 | 0.9660 |
|
71 |
+
| 0.0054 | 3.23 | 1600 | 0.0073 | 0.9625 | 0.9703 | 0.9664 |
|
72 |
+
| 0.0054 | 3.43 | 1700 | 0.0073 | 0.9658 | 0.9659 | 0.9658 |
|
73 |
+
| 0.0054 | 3.63 | 1800 | 0.0073 | 0.9626 | 0.9707 | 0.9666 |
|
74 |
+
| 0.0054 | 3.83 | 1900 | 0.0073 | 0.9659 | 0.9677 | 0.9668 |
|
75 |
+
| 0.0046 | 4.03 | 2000 | 0.0075 | 0.9671 | 0.9659 | 0.9665 |
|
76 |
+
| 0.0046 | 4.23 | 2100 | 0.0075 | 0.9654 | 0.9687 | 0.9671 |
|
77 |
+
| 0.0046 | 4.44 | 2200 | 0.0075 | 0.9662 | 0.9676 | 0.9669 |
|
78 |
+
| 0.0046 | 4.64 | 2300 | 0.0074 | 0.9657 | 0.9684 | 0.9670 |
|
79 |
+
| 0.0046 | 4.84 | 2400 | 0.0074 | 0.9664 | 0.9678 | 0.9671 |
|
80 |
+
|
81 |
+
|
82 |
+
### Framework versions
|
83 |
+
|
84 |
+
- Transformers 4.39.1
|
85 |
+
- Pytorch 2.2.1+cu121
|
86 |
+
- Datasets 2.18.0
|
87 |
+
- Tokenizers 0.15.2
|