--- library_name: transformers language: - spa license: apache-2.0 base_model: rasel35/whisper-base-es-medical-terms tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper Pre Tuned 300 Audios - Nacho v3.0 results: [] --- # Whisper Pre Tuned 300 Audios - Nacho v3.0 This model is a fine-tuned version of [rasel35/whisper-base-es-medical-terms](https://huggingface.co/rasel35/whisper-base-es-medical-terms) on the 300 audios 1.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3444 - Wer: 16.1793 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 1.8732 | 1.0 | 18 | 1.1907 | 60.6238 | | 0.676 | 2.0 | 36 | 0.4489 | 21.0526 | | 0.2633 | 3.0 | 54 | 0.4061 | 17.9337 | | 0.132 | 4.0 | 72 | 0.3804 | 17.9337 | | 0.0802 | 5.0 | 90 | 0.3507 | 41.7154 | | 0.0498 | 6.0 | 108 | 0.3660 | 18.5185 | | 0.036 | 7.0 | 126 | 0.3614 | 17.3489 | | 0.0213 | 8.0 | 144 | 0.3329 | 15.9844 | | 0.0152 | 9.0 | 162 | 0.3453 | 15.7895 | | 0.0042 | 9.4507 | 170 | 0.3444 | 16.1793 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.0 - Tokenizers 0.21.0